é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Kosmo: Efficient Online Miss Ratio
Curve Generation for Eviction Policy Evaluation
Kia Shakiba, Sari Sultan, and Michael Stumm, University of Toronto

https://www.usenix.org/conference/fast24/presentation/shakiba

This paper is included in the Proceedings of the
22nd USENIX Conference on File and Storage Technologies.
February 27-29, 2024 - Santa Clara, CA, USA
978-1-939133-38-0

Open access to the Proceedings
of the 22nd USENIX Conference on
File and Storage Technologies

is sponsored by

F NetApp-

+ B S————
b »

ARTIFACT
EVALUATED EVALUATED
susenix susenix

ssssssssssssssssssss

ARTIFACT

AVAILABLE

Kosmo: Efficient Online Miss Ratio Curve Generation
for Eviction Policy Evaluation

Kia Shakiba, Sari Sultan, and Michael Stumm
University of Toronto

Abstract

In-memory caches play an important role in reducing the
load on backend storage servers for many workloads. Miss
ratio curves (MRCs) are an important tool for configuring
these caches with respect to cache size and eviction policy.
MRC:s provide insight into the trade-off between cache size
(and thus costs) and miss ratio for a specific eviction policy.
Over the years, many MRC-generation algorithms have been
developed. However, to date, only Miniature Simulations is
capable of efficiently generating MRCs for popular eviction
policies, such as Least Frequently Used (LFU), First-In-First-
Out (FIFO), 2Q, and Least Recently/Frequently Used (LRFU),
that do not adhere to the inclusion property. One critical
downside of Miniature Simulations is that it incurs significant
memory overhead, precluding its use for online cache analysis
at runtime in many cases.

In this paper, we introduce Kosmo, an MRC generation al-
gorithm that allows for the simultaneous generation of MRCs
for a variety of eviction policies that do not adhere to the
inclusion property. We evaluate Kosmo using 52 publicly-
accessible cache access traces with a total of roughly 126
billion accesses. Compared to Miniature Simulations config-
ured with 100 simulated caches, Kosmo has lower memory
overhead by a factor of 3.6 on average, and as high as 36,
and a higher throughput by a factor of 1.3 making it far more
suitable for online MRC generation.

1 Introduction

In-memory caches play an important role in reducing the load
on backend storage servers for many workloads [1-6]. These
caches improve scalability and can reduce the latency of data
access requests by serving data directly from main memory.
Redis [7] and Memcached [8] are two popular in-memory
caches, both of which are open source and often provided as
a service by cloud providers [9-12].

In-memory caches can consume a large portion of a data
center’s operating budget, sometimes exceeding 60% of the
total operating cost [13]. In cloud-hosted environments, such
caches are priced proportionately to their size. As such, it is
important to provision each cache to the “right” size using the
cost-performance trade-offs for its workloads: caches that are
too small incur higher miss ratios and thus higher backend
storage server loads, while caches that are too large consume
unnecessary resources and have higher operational costs.

One of the most effective tools to understand the trade-
off between cache size and miss ratio is the miss ratio curve
(MRC), and over the years, many MRC-generation algorithms
have been developed [14-22]. An MRC plots a cache’s miss
ratio as a function of the cache size. Figure | depicts an exam-
ple of such an MRC. The MRC shows the effect on the miss
ratio of varying the cache’s size from 0GiB to 400GiB under
the MSR srcl workload [23] using the Least Frequently Used
(LFU) eviction policy. There is a sudden drop in the miss ratio
between roughly 160GiB and 190GiB. Such a drop is referred
to as a cliff and knowledge of its presence is particularly use-
ful: if the cache were initially configured with 160GiB of
memory, the MRC indicates that increasing the cache size
by 30GiB would result in roughly 30% improvement in the
miss ratio. The plateaus between 70GiB and 160GiB, and
190GiB and 270GiB are also informative: they indicate that
if the cache is currently configured to a size within one of the
plateaus, then the size can be decreased to 70GiB or 190GiB,
respectively, without severely impacting the miss ratio.

The choice of eviction policy is also an important factor
in configuring an in-memory cache. While most in-memory
caches default to the Least Recently Used (LRU) eviction pol-
icy, it has been shown that under certain workloads, caches op-
erate more efficiently using non-LRU eviction policies [3, 24—
27]. For example, the LFU eviction policy can sometimes
achieve a roughly 14% reduction in miss ratio when allo-
cated the same cache size and under the same workload [27].
Eviction policies such as First-In-First-Out (FIFO) also have
lower computational and memory overheads than other poli-
cies, such as LRU [3].

To optimize a cache configuration in terms of both size
and eviction policy, it is necessary to generate an MRC for

1
0.8
0.6

0.4

Miss ratio

0.2

0

0 50 100 150 200 250 300 350
Size (GiB)
Figure 1: MRC generated for MSR src1 workload [23] using the
Least Frequently Used (LFU) eviction policy.

USENIX Association

22nd USENIX Conference on File and Storage Technologies 89

each eviction policy under consideration. However, a key lim-

itation of almost all existing MRC-generation algorithms is

that they only model caches operating with an eviction pol-
icy that satisfies the inclusion property (e.g., LRU); as such,
they do not support eviction policies such as LFU, FIFO, 2Q,

Least Recently/Frequently Used (LRFU), or Most Recently

Used (MRU). The only known MRC generation algorithm

capable of modeling a wide array of non-LRU caches with

reasonable computational efficiency is Miniature Simulations

(MiniSim) [18]. It runs individual simulations of caches of

different sizes and makes use of the SHARDS [17] sampling

algorithm to improve its runtime performance. However, Mini-

Sim has several serious drawbacks, the most notable being

its high memory usage. MiniSim effectively simulates inde-

pendent caches of varying sizes, often causing duplicate data
to be stored in the internal structures of many of these simu-
lated caches. We found through experimentation with numer-
ous workloads that MiniSim configured with 100 simulated
caches consumes the following amounts of memory on aver-
age: 113MiB for the LFU eviction policy, 57TMiB for FIFO,
40MiB for 2Q, and 31MiB for LRFU, with up to 3.1GiB for
the LFU eviction policy, 1.72GiB for FIFO, 396MiB for 2Q,
and 597MiB for LRFU in extreme cases. Further, to generate

MRCs for multiple eviction policies simultaneously, these

memory requirements are compounded. With these memory

requirements, MiniSim will likely consume substantial mem-
ory, and hence may even interfere with the cache itself.

This paper introduces Kosmo, an MRC generation algo-
rithm that supports the simultaneous generation of MRCs for
a variety of eviction policies while, on average, using signifi-
cantly less memory than MiniSim, making it better suited for
online MRC generation. Kosmo uses a novel method of cal-
culating reuse distances through the introduction of eviction
maps. We show how Kosmo can be used to simultaneously
generate MRCs for six eviction policies: LFU, FIFO, 2Q,
LRFU, LRU, and MRU. Notably, LFU, FIFO, 2Q, LRFU, and
MRU do not adhere to the inclusion property (§2.2).

We evaluate Kosmo using a total of 52 publicly-available
workloads and measure memory usage, throughput, and ac-
curacy for LFU and FIFO, and 33 workloads for the 2Q and
LRFU eviction policies. Kosmo requires an average of 3.6
times less memory, and up to 36 times less than MiniSim
across all eviction policies. Kosmo has an average throughput
1.3 times that of MiniSim across all eviction policies. Finally,
Kosmo, which is also an approximate generation algorithm,
produces MRCs with comparable accuracy to those generated
by MiniSim.

Contributions. The contributions we make in this paper are:

e We introduce Kosmo, a novel method of simultaneously
generating MRCs for a variety of eviction policies.

e We introduce a method of reconstructing the stacks of
caches of varying sizes using a single copy of the cached
data through our novel data structure, eviction maps.

e We describe how to apply eviction maps to the LFU, FIFO,

2Q, LRFU, LRU, and MRU eviction policies, allowing
Kosmo to generate MRCs for these policies.

e We evaluate the performance of both Kosmo and Mini-
Sim and show that Kosmo achieves an average memory
reduction of a factor of 3.6 and up to a factor of 36.

e We examine to what degree different eviction policies vio-
late the inclusion property.

Limitations. The work we present has several limitations,
however. First, we only describe Kosmo for six sample evic-
tion policies. Although we know Kosmo supports additional
eviction policies beyond those described in this paper, it re-
mains an open problem which classes of eviction policies
Kosmo is able to support. Second, the MRCs Kosmo gen-
erates are monotonically decreasing which could increase
the error for eviction policies which display significant non-
monotonic behaviour. Finally, we recognize that the perfor-
mance of MiniSim is affected by the performance of the un-
derlying cache it is simulating.

2 Background

In this section, we discuss relevant prior work. We first de-
scribe the eviction policies that are the focus of this paper,
namely: LFU, FIFO, 2Q, LRFU, LRU, and MRU. We then
discuss the inclusion property and its importance in MRC
generation. Next, we describe several key MRC generation
algorithms which provide the necessary background to under-
stand the Kosmo algorithm. Mattson’s algorithm gives insight
into how MRC generation can be done for policies that do not
violate the inclusion property (generally referred to as “stack-
based eviction policies”). SHARDS is the sampling algorithm
used by both Kosmo and MiniSim. MiniSim is currently the
only known, reasonably computationally efficient method for
generating MRCs for caches with non-stack-based eviction
policies. It is the current state-of-the-art algorithm to which
we compare Kosmo.

2.1 Eviction policies

LFU (Least Frequently Used) evicts the least frequently used
object in the cache to make room for new objects. A simple
method of implementing this policy is to use a stack of objects,
ordered firstly by frequency count and secondly by last access
time. If an object needs to be evicted, the one with the smallest
frequency count, or oldest time on a tie, is selected. LFU
caches often outperform LRU caches in workloads that exhibit
a Zipfian distribution [24, 25].

FIFO (First-In-First-Out) evicts objects in the same order
in which they first entered the cache. It can be implemented
using a stack' of objects ordered by their entry times where
the object with the oldest time is selected for eviction. This
policy has been found to perform well on large workloads

IThis is sometimes also referred to as a “queue” in this context. In this
paper, however, we refer to the internal data structure which holds the objects
of a cache as a “stack,” regardless of eviction policy.

90 22nd USENIX Conference on File and Storage Technologies

USENIX Association

in which accesses have large inter-arrival gaps, such as those
exhibited by scanning behaviours [3, 26]. Of all the eviction
policies, it is the most efficient to implement [3].

LRU (Least Recently Used) and MRU (Most Recently
Used) evict the least recently and most recently accessed ob-
ject in the cache, respectively, to make room for a new object.
To implement these policies, a stack of objects sorted by their
last access times is used, where the object with the oldest
(LRU) or youngest (MRU) time is evicted. LRU is perhaps
the most widely-used eviction policy, though MRU has been
found to perform better when the workload is cyclical [28].

2Q [29] maintains objects in a cache in two separate stacks:
one for objects which have been accessed only once (the A/
stack), and one for objects which have been accessed multiple
times (the Am stack). Objects in the Al stack are evicted
in FIFO order, and objects in the Am stack are evicted in
LRU order. The Al stack is further partitioned into two stacks
referred to as Alin and Alout” of size Kin and Kout, respec-
tively, where Kin and Kout are ratios of the total cache size
(the authors note that a Kin value of 25% and a Kout value of
50% work well in most cases). The Alin and Alout stacks
differentiate themselves in the handling of objects that get
accessed a second time; if the accessed object is in the Alout
stack, it gets promoted to the Am stack, while if it is in the
Alin stack, it does not. Upon the first access to an object, it
is placed at the head of the Alin stack. If the Alin stack is
full, the oldest object in the stack is removed and placed at the
head of the Alout stack. If the Alout stack is full, the oldest
object is evicted from the cache. If an object which already
exists in the Alout stack is accessed, it is removed from the
Alout stack and placed at the head of the Am stack. If the
Am stack is full, an object is evicted using LRU.

LRFU (Least Recently/Frequently Used) combines ob-
jects’ recency (i.e., the time since the object was last ac-
cessed) and frequency counts to determine which object to
evict. Each object has an associated Combined Recency and
Frequency (CRF) value computed as CRF = Z{»‘Zl F(thow —
faccess;)» Where k is the number of times the object has been ac-
cessed previously, 7,0, is the current time, f4ccess; 1s the time at
which the object was accessed the i'" time, and F (x) is defined
as F(x) = (%)7‘*", where p is a value greater than or equal to
two, and A is a value between 0 and 1. Tuning the value of A
allows the cache to behave more similarly to an LFU cache
(with A closer to 0) or an LRU cache (with A closer to 1). The
object with the smallest CRF value is selected for eviction.
Although the described CRF formula requires the full history
of the object’s access times, the authors note that given an
object’s last access time and last CRF value, one can calculate
the updated CRF value without needing the object’s access his-
tory USing CRFupdated = F(O) +F(tn0w - tlast_access) *CRFs.
The LRFU policy has been shown to outperform many other
policies for a number of important workloads [27].

2The Alout “ghost” stack holds references to objects, not their values.

2.2 Inclusion property

An important characteristic of an eviction policy is whether or
not it adheres to the inclusion property. This property states
that all objects that exist in a cache of size S at a given time,
also exist in any cache of size S’ > S, when given the same
access trace [18, 30]. An extension of this property is the
strict inclusion property which adds the further constraint that
all common objects in any two caches (with the same access
trace) must be in the same order in the caches’ internal data
structures (i.e., stacks).

An MRC generation algorithm that models an eviction pol-
icy adhering to the strict inclusion property is often referred
to as a “stack algorithm,” and can be implemented similarly to
Mattson [14], described below. If the eviction policy does not
adhere to the strict inclusion property, a dedicated algorithm
for the eviction policy or MiniSim must be used.

In the literature, the LFU eviction policy is often referred
to as a stack algorithm, which implies it can be modeled using
an algorithm similar to Mattson [14, 17, 30]. However, this
is only the case for so called ideal LFU caches, in which the
cache maintains frequency counters for all objects that were
ever accessed; if an object is evicted and accessed again in
the future, its counter persists and is further incremented. In
practice, LFU caches do not maintain the counters of evicted
objects [31], as maintaining these counters would entail sig-
nificant memory overhead. These practical LFU cache imple-
mentations remove the counter of any object being evicted
from the stack, and if a previously evicted object is accessed
again, a new counter is instantiated and initialized to one.

Practical LFU caches do not adhere to the inclusion prop-
erty, in contrast to ideal LFU caches. Table | shows this for
a simple access trace. Here, the objects and their associated
counts in two practical LFU caches of size 3 and 4 are shown.
At each time step, the frequency counter (shown alongside
each object in brackets) of the accessed object is incremented
by one, or initialized to one in the case of an object being
accessed for the first time. The stack of each cache is ordered
from least to most likely to be evicted from the cache (i.e.,
the object with the largest frequency counter, or most recently
accessed if two objects have the same frequency counter, on
the left). At time 9, it is evident that although the two caches
were provided with the same access trace, object “e” exists
in the cache of size 3, but not in the cache of size 4. This is a
violation of the inclusion property.

An interesting question is whether it is feasible to use
MRCs generated under the assumption of ideal LFU caches
(which adhere to the strict inclusion property) to model the
miss ratios of practical LFU caches. Figure 2 demonstrates
that this is not the case. The figure depicts the MRCs for ideal
and practical LFU caches for two workloads. For the MSR
srcl workload [23], the miss ratios deviate substantially for
cache sizes between 190GiB and 240GiB. Similarly, for the
MSR web workload [23], the miss ratios deviate significantly
for cache sizes between 38GiB and 46GiB.

USENIX Association

22nd USENIX Conference on File and Storage Technologies 91

Table 1: Sample trace for LFU caches of sizes 3 and 4 demonstrating
a violation of the inclusion property.

LFU cache size 3 LFU cache size 4
a(l) a(l)

b(1), a(1) b(1), a(1)

c(1), b(1), a(1) c(1), b(1), a(1)
d(1), c(1), b(1) d(1), (1), b(1), a(1)
a(l), d(1), (1) a(2), d(1), (1), b(1)
d(2), a(1), c(1) d(2), a(2), c(1), b(1)
d(2), b(1), a(1) b(2), d(2), a(2), c(1)
d(2), e(1), b(1) b(2), d(2), a(2), e(1)
d(2), e(1), f(1) b(2), d(2), a(2), f(1)

Time Access
1

0

O 00| A | | K| W
|0 C|laly | alo o

— Practical

— Practical

—— Ideal

0+
0 50 100 150 200 250 300 0 10 20 30 40 50 60 70
Size (GiB) Size (GiB)

Figure 2: MRCs for ideal and practical LFU caches for the MSR
srcl (left) and web (right) workloads [23].

2.3 MRC generation

Mattson’s algorithm. Mattson et al. were the first to describe
a method capable of constructing a miss ratio curve from an
LRU cache’s access trace in a single pass [14]. To generate the
MRC, Mattson’s algorithm maintains an LRU stack of all the
accessed objects. Because MRC generation algorithms simply
model caches but do not store the values of the accesses, an
“object” in this context refers to the referenced key or a hash
of the referenced key. Upon each access to an object, if the
object has been previously accessed, its reuse distance is
measured as the number of objects ahead of it in the stack and
is recorded in a histogram. The object is then moved to the
front of the LRU stack. If an object has not been seen before,
the reuse distance is said to be infinity and is recorded as such
in the histogram; then a new object is instantiated and inserted
at the front of the LRU stack. After the entire trace has been
processed, the resulting MRC is generated as the inverse CDF
of the histogram. The Kosmo algorithm also uses a histogram
of reuse distances to generate MRCs.

Other algorithms have been introduced to improve on Matt-
son’s computational overhead. Olken [15] maintains the ob-
jects in a balanced tree, sorted by their last access times to
bring the compute complexity from O(MN) to O(NlogM),
where M and N are the number of unique and total number of
accesses, respectively. Parda [16] extends the Olken algorithm
to support the parallel processing of an access trace.

SHARDS. Waldspurger et al. describe an algorithm called
SHARDS which works in conjunction with an exact MRC
generation algorithm, such as Olken. SHARDS uses Olken
to generate the MRC, but uses only a sampled subset of the
trace [17]. This significantly improves the efficiency with
which an MRC can be generated, and while the resulting MRC
is approximate, it typically has reasonably low error [17].
Kosmo also uses SHARDS to improve its performance.

SHARDS can be implemented as either fixed-rate or fixed-
size. The fixed-rate implementation samples the trace using
a specific rate, R. The authors of the paper found that an R
value of 0.001 results in reasonably accurate MRCs, thus
reducing the overhead by a factor of 1,000 [17]. The fixed-
size implementation extends the fixed-rate implementation
by adjusting the sampling rate downward so as to limit the
number of objects that exist in the MRC algorithm’s internal
data structures at any given time to a constant, S,,4,. In our
experimentation, we use S,,,, values of 1,024 and 2,048 when
running Kosmo (as was done in the SHARDS paper).

The authors of SHARDS noticed that the expected number
of sampled accesses, E[Ns], was often not equal to the mea-
sured number, Ns. To correct for this, after the access trace
has been fully processed, the difference between E[Ns] and
Ns is added to the first histogram counter (i.e., the histogram
counter for the smallest reuse distance). By applying this cor-
rection, the authors achieved significant improvements in the
error induced by the sampling algorithm [17].

Miniature Simulations. Waldspurger et al. describe a
method of generating MRCs called Miniature Simulations
(which we will refer to as “MiniSim”), capable of modelling
any eviction policy. MiniSim independently simulates caches
at varying sizes to obtain the resulting MRC [18].

To generate an MRC using MiniSim, a maximum simulated
cache size, Cy,4x, 1S selected. A number of simulated caches
(Nc) are then instantiated, each simulating a cache size be-
tween Cpay/Ne and Cpygy. In practice, N is often set to 100.
Upon each access in a trace, the access is processed by each
simulated cache. When the trace is complete, the miss ratios
of the simulated caches and each simulated cache’s respective
size are used to form an MRC.

MiniSim utilizes the sampling method proposed by
SHARDS to operate on a small subset of the total trace to im-
prove runtime performance, making it an approximate MRC
generation algorithm.

Although MiniSim can generate MRCs for any eviction
policy, it has two key shortcomings. First, it has high memory
usage as each data point on the curve simulates an instance
of a cache, and the different simulations of the caches do
not share any of their internal data structures. These caches,
especially those with similar sizes, often contain many of
the same objects, yet each cache allocates memory for these
objects independently. Experimentally, we found that Mini-
Sim used an average of 113MiB to generate a single MRC for
the LFU eviction policy, with up to a maximum of 3.1GiB.
To reduce this memory usage significantly, one would have to
reduce the sampling rate of SHARDS or reduce the number
of simulated caches, which in turn would reduce the accuracy
of the resulting MRC.

A second key shortcoming is that the range of cache sizes
to be simulated must be defined before the input trace is first
processed and cannot be modified while the simulation is on-
going. This is limiting when generating MRCs online for live

92 22nd USENIX Conference on File and Storage Technologies

USENIX Association

workloads, where the workload’s working set size is unknown
ahead of time. Because the maximum simulated cache size
Cinax cannot be modified after the simulation begins, a large,
worst case, value is typically selected to ensure the access
trace’s working set size (i.e., the cache size required to store
all unique objects) is likely to be captured. This prevents
MiniSim from being able to focus the sizes of the simulated
caches to regions of the MRC which lie within the workload’s
actual working set size.” For example, although Twitter tends
to overprovision its caches [3], of the publicly available ac-
cess traces in the Twitter dataset, 25% have a working set size
of less than 2GiB. If a large C,,,,, value, such as 200GiB, is
selected to model one of these access traces, the simulated
caches are sized in increments of 200GiB /100 = 2GiB, pre-
venting points of interest on the MRC from being observable.
This requires MiniSim to be configured with a large number
of simulated caches as reducing this to a smaller value will
further reduce the resulting MRC’s granularity.

3 Kosmo

We now present Kosmo, an MRC generation algorithm capa-
ble of generating approximate MRCs for a variety of eviction
policies simultaneously. We begin by presenting the algorithm
in general terms (§3.2) and then describe several optimiza-
tions that significantly improve its efficiency (§3.3). We then
describe the Kosmo algorithm for the LFU eviction policy
(§3.4) specifically, followed by the required extensions to sup-
port other evictions policies (§3.5). We then show how Kosmo
can be extended to support variable object sizes (§3.6) and
TTLs (§3.7). Finally, we describe how Kosmo can generate
MRC:s for multiple eviction policies simultaneously (§3.8).

Both Kosmo and MiniSim simulate caches of different
sizes to generate an MRC. The key difference is that Mini-
Sim maintains a stack for each cache throughout the duration
of the simulation, while Kosmo reconstructs the stacks dy-
namically, only as needed. MiniSim keeps track of the miss
ratios of the different caches and constructs the MRC using
these miss ratios once it has processed the entire access trace,
while Kosmo uses an approach similar to Mattson: it records
stack distances encountered in a histogram and, in the end,
constructs the MRC from the histogram.

Further, MiniSim always simulates the same pre-configured
cache sizes, regardless of the working set size of the access
trace, while Kosmo simulates a different set of cache sizes
on each access, the largest simulated cache size being the
reuse distance of the currently accessed object minus one.
This allows Kosmo to generate MRCs with similar error rates
to that of MiniSim while simulating far fewer caches, which

3The sizes of MiniSim’s simulated caches can be configured non-
uniformly [18], though this would require knowledge of either the shape
of the MRC or a specific point of interest around which to cluster the sizes
of the simulated caches (e.g., the current size of the production cache) before
processing the access trace. Further, the shapes of some workloads’ MRCs
can change dramatically over time [20, 32, 33].

leads to lower memory and compute overheads for Kosmo.
The simulated caches in an instance of MiniSim do not
share any internal data structures, therefore an object may
exist simultaneously in the stacks of multiple caches, causing
MiniSim to consume large amounts of memory. In contrast,
Kosmo maintains the data representing an object only once
in a global data structure. Each object in this data structure
contains the minimal amount of data required to allow the
stack of a cache of any size to be reconstructed dynamically.

3.1 Kosmo data structures

Kosmo maintains all objects ever accessed in a data structure
called the global table, implemented as a dynamic hash table.
Each object in the global table has an associated eviction map
which, in turn, consists of a set of eviction records. Whenever
an object is evicted from any of the caches (of different sizes)
being simulated, an eviction record is added to the eviction
map of the object. This eviction record includes or registers
the size of the cache from which the object was evicted, as
well as other policy-specific information described further
below. Using an object’s eviction map, Kosmo is able to
determine at any time whether the object exists in a cache of
a specified size. If it exists in the cache, Kosmo can determine
its position within the cache’s internal data structure, referred
to as the cache’s stack, using the policy-specific information in
the eviction records. An eviction map also holds a reference
to the associated object, allowing it to access the object’s
properties, such as the last access time or ideal frequency
count in the case of LFU caches.

Eviction maps are eviction policy-specific and must be
implemented on a per-policy basis. However, all eviction
maps support three primary operations:

1. For a given object, identify the size of the smallest cache
that contains the object.

2. For its associated object, calculate the object’s sorting
key, given a cache size, S. The sorting key is calculated
using policy-specific information in the eviction records,
allowing Kosmo to properly order objects in the stack of
the cache of size S it is reconstructing.

3. Insert a new eviction record.

The specific implementation of eviction maps for the LFU
eviction policy is described in §3.4. The implementations for
the FIFO, 2Q, LRFU, LRU, and MRU policies are described
in §3.5. The implementations for the LRU and MRU policies
are provided to demonstrate Kosmo’s generality and are not
included in the experimental analysis.

3.2 The Kosmo algorithm

We first describe a variant of the Kosmo algorithm that is
highly inefficient. Optimizations that make it efficient are
described in §3.3. Upon each access, the Kosmo algorithm
performs the following sequence of steps:

1. Calculate the reuse distance D of the accessed object and

USENIX Association

22nd USENIX Conference on File and Storage Technologies 93

update the histogram counter associated with D.

2. Reconstruct the stacks of the caches of sizes S < D, for
every possible cache size at a byte-level granularity. These
are the caches that do not contain the accessed object.

3. Select an object from each reconstructed stack for eviction
(to make space for the accessed object) and place a new
eviction record in the eviction map of the evicted object.

Using the accessed object’s key, its associated eviction map
is found using the global table. The object’s reuse distance D
can be determined using the object’s eviction map by finding
the smallest sized cache in which, according to the eviction
records, the object exists. If the object is not found in the
global table, its reuse distance is set to infinity, as it is being
accessed for the first time. The histogram counter associated
with D is then incremented.

For eviction policies that do not adhere to the inclusion
property, an interesting question is: what is the reuse distance
of an object? For eviction policies that do adhere to the in-
clusion property, the reuse distance is clear. It is simply the
minimal cache size that contains the accessed object; any
larger cache will contain the object, while any smaller cache
will not. For eviction policies that do not adhere to the inclu-
sion property, an object may exist in a cache of size S, but not
exist in some caches of size S’ > S. Nevertheless, we argue
that the size of the smallest cache containing the accessed
object should be the reuse distance. There are several motiva-
tions for this choice. First, this choice allows for an important
optimization to ensure eviction maps do not contain a large
number of eviction records, which we describe in $3.3. Sec-
ond, the choice simplifies the calculation of an object’s reuse
distance. Third, in our experiments, we found it is rare for
an access to cause a violation of the inclusion property and
maintain this violation for large ranges of cache sizes, which
we show in §4.5.

Immediately after an object O is accessed, it must exist
at all cache sizes. Hence, for each cache of size S in which
the object does not exist when it is accessed, some object
needs to be evicted to make space for O. To select an object
for eviction, Kosmo reconstructs the stack of the cache by
iterating through all objects in the global table. Using each
object’s eviction map, Kosmo determines if the object exists
in the cache (of size S) and, if so, where in the cache’s stack
the object resides relative to other objects using the objects’
sorting keys. Through this process, Kosmo reconstructs the
cache’s full stack. The object at the top of the reconstructed
stack is selected as the object to be evicted and a new eviction
record is accordingly inserted in the object’s eviction map.

It is clear that Kosmo, as described, is highly inefficient.
First, because the global table contains an entry for every
object ever accessed, it can grow quite large. Second, to de-
termine which objects need to be evicted from which recon-
structed stacks, Kosmo must reconstruct the stack for every
cache of size less than the accessed object’s reuse distance. Fi-
nally, as an eviction record is inserted into an object’s eviction

map each time it is selected for eviction, the eviction maps
may contain a large number of eviction records.

3.3 Optimizations

We describe four optimizations: cache size granularity, evic-
tion record pruning, the use of SHARDS, and parallel stack
reconstruction.

Granularity. To reduce the number of cache stacks that need
to be reconstructed on each access, a granularity parameter G
is introduced. This parameter limits the number of caches that
need to be reconstructed on each access to a fixed number. For
example, if an object O is accessed and all cache sizes less
than or equal to 3GiB are found to not contain O and must
therefore be reconstructed to perform the necessary evictions,
with a granularity parameter of 100, 100 simulated caches in
size increments of 3GiB/100 = 30MiB are examined.

We experimentally evaluated appropriate values of G. A
higher value of G typically means a lower MAE (mean abso-
lute error); however, this also leads to increased computational
overhead. Figure 3 shows the experimental results of varying
values of G and the corresponding MAEs for all workloads
in the MSR dataset [23]. An interesting observation is that
Kosmo can achieve a low mean MAE with even a small value
of G. As evident in this figure, selecting a G value greater
than 10 does not significantly reduce the mean MAE. We
therefore conservatively select 10 as our value of G and use it
throughout all our simulations.

Upon accessing an object with reuse distance D, Kosmo
only simulates G caches of sizes S < D. As a result, it is able
to achieve a comparable MAE while simulating significantly
fewer caches than MiniSim. The accessed object is assumed
to already exist in caches of sizes S > D, so they do not need
to be simulated. In contrast, MiniSim simulates all (typically
100) considered cache sizes on each access, regardless of the
accessed object’s reuse distance.

Eviction record pruning. To reduce the number of eviction
records in an object’s eviction map, each time a new eviction
record is added, indicating the object is being evicted from
the cache of size S, all eviction records with cache size S’ < S
are removed. In doing so, Kosmo is effectively assuming the
inclusion property where an object being evicted from a cache
of size S will thereafter also not exist at any cache of size
§" < S. This may introduce inaccuracies for eviction policies
which do not adhere to the inclusion property, however, we
have found these inaccuracies to be negligible (§4.4).
Pruning drastically reduces the size of each object’s evic-
tion map. Figure 4 shows the effect of pruning on the average
number of eviction records in objects’ eviction maps through-
out a typical access trace of a workload. On average, pruning
reduces the average size of the eviction maps (i.e., the num-
bers of records it contains) by a factor of roughly 387. This
drastically reduces the memory required to store the eviction
records as well as the computational overhead of searching

94 22nd USENIX Conference on File and Storage Technologies

USENIX Association

O EECEE EE B R L A A N

Figure 3: MAEs of varying granularities for all workloads in the
MSR dataset [23]. A fixed-sized implementation of SHARDS was
used with Syux = 2,048 for granularities between 1 and 200. The
top line identifies the maximum result while the bottom line identifies
the minimum. The top of the box is the 75 percentile result and
the bottom of the box is the 25'" percentile result. The x and +
symbols indicate the mean and median MAEs, respectively, for each
granularity value.

» 1000
©
: Pruning = = =
© w0 No pruning
c
i)
<2 10
: .
= 1 e
N T M
o
[
>
< 0
0 1x106 2x106 3x10° 4x105 5x105 6x106

Access count

Figure 4: The average number of eviction records per object in the
global table throughout the MSR web workload [23] using fixed-rate
SHARDS (R = 0.001) shown with (dashed red line) and without
(solid blue line) pruning. The unsampled access count is shown here
(i.e., not the number of sampled accesses).

through the eviction records when determining if the object
exists in a cache of size S.

SHARDS. On each access, Kosmo must iterate through all
objects in its global table to reconstruct the stacks of various
cache sizes. The global table could include billions of objects.
For this reason, we use SHARDS to spatially sample the
accesses. This lessens the number of objects in the global
table and reduces the stack reconstruction time. The fixed-size
variant of SHARDS (§2.3) is particularly useful for Kosmo
as it limits the size of the global table to a known constant:
the S, value of SHARDS.

Parallel stack reconstruction. As the reconstruction of a
cache’s stack does not modify the global table, the recon-
struction of the stacks of multiple caches can all be done in
parallel. This improves the response time of Kosmo, but in-
creases the memory overhead because the stacks of all caches
exist in memory simultaneously. This creates a trade-off be-
tween throughput and memory usage. However, as we show
in §4.4, Kosmo uses significantly less memory than MiniSim,
even when reconstructing stacks in parallel.

3.4 Kosmo for LFU

To support the LFU eviction policy specifically, Kosmo main-
tains the following information in its data structures. First,

Algorithm 1: Eviction map for LFU cache object.

Ref tobject
Record :map — Map<cache_size, count>
1 Eviction Map LFU:
2 Function Insert(cache_size):
3 L map.insert(cache_size,ob ject.global_count)
4 Function FindSmallestExisting():
5 for record in map do
6 if record.count == object.global_count then
7 L return record.size + 1
8 | return object.size
9 Function GetSortingKey(cache_size):
10 rec <— map.find(> cache_size)
11 if /rec then
12 L return ob ject.global_count
13 | return object.global_count — rec.count

each object in the global table maintains a timestamp of when
the object was last accessed and a counter referred to as the
object’s global count. This counter is incremented by one
each time the object is accessed and is therefore the same
as the object’s frequency count in an ideal LFU cache. Sec-
ond, each eviction record in the object’s associated eviction
map contains the size of the cache from which the object was
evicted, and the object’s global count value when the eviction
occurred. The latter makes it possible to infer the object’s
frequency count for a specific cache size, referred to as the
local count, as it would be in a practical implementation of a
cache of that size. Algorithm | contains the pseudocode for
the eviction map’s three main operations.*

We found that while a practical LFU cache regularly vi-
olates the strict inclusion property, it does not violate the
(non-strict) inclusion property often. Although objects in the
stacks of caches of different sizes may be in different orders,
typically, the objects in each cache’s stack are a subset of
the objects in the stack of a larger cache. Experimentally, we
noticed that, on average, only 1.49% of accesses to an LFU
cache cause the (non-strict) inclusion property to be violated.
With Kosmo, we therefore assume that the (non-strict) inclu-
sion property holds for practical LFU caches (unlike Mattson
which assumes the strict inclusion property holds) and show
in our experimentation results that this produces negligible
errors in the resulting MRCs.

To obtain the reuse distance of an object O when it is
accessed, we search for O’s eviction records to identify the
record with the largest cache size S wherein the record’s count
value is equal to the object’s current global count. This record
indicates the object has not been accessed in a cache of size
S since O was last evicted (at which time this record was
inserted) and therefore the object does not exist in any caches

4Qur descriptions here assume fixed-sized objects, though the algorithms
shown in the listings accommodate variable-sized objects as described in §3.6
(i.e., object.size [variable-sized] in the listings corresponds to 1 [fixed-
sized] in the text).

USENIX Association

22nd USENIX Conference on File and Storage Technologies 95

of sizes §' < S. The object’s reuse distance is then S+ 1. If
no eviction record which satisfies this condition is found, we
can conclude the object exists at all cache sizes, so the reuse
distance is 1.

To reconstruct the stack of a cache of size S, we use the
eviction map for each object in the global table to (i) deter-
mine if the object exists in a cache of this size, and (ii) if the
object exists, calculate its sorting key. To determine if the ob-
ject exists in a cache of size S, we simply check if S is greater
than or equal to the object’s reuse distance. If the object is
found to exist, its sorting key is the object’s local count paired
with its last access time. Once calculated, the object then can
be placed in the correct position in the reconstructed stack.

To calculate the local count of an object O in a cache of size
S, we search O’s eviction map for an eviction record with the
smallest cache size S that satisfies S’ > S. If no such record
exists, then O has never been evicted from any cache of size
S’ > S since O was first accessed, therefore its local count is
equal to its global count. Otherwise, if an eviction record with
size §' > § is found, the local count is O’s global count minus
O’s global count when it was evicted from the cache of size
S’ (i.e., the count value in the eviction record), given that the
local count should equal the number of accesses to O since
its last eviction.

After reconstructing the LFU stack of a cache, Kosmo se-
lects the object at the top of the stack (i.e., the object with the
smallest sorting key) for eviction. A new eviction record is
inserted with the cache size and the object’s global count into
said object’s eviction map.

3.5 Other eviction policies

The Kosmo algorithm, as described in §3.2, is not designed for
any specific eviction policy. Kosmo can generate MRCs for
other eviction policies by using the same process, but using
policy-specific implementations for the eviction maps. Here,
we describe eviction maps for five other policies, namely
FIFO, 2Q, LRFU, LRU, and MRU as examples.

FIFO. The design of the FIFO eviction map is fundamentally
different than that of the LFU eviction map. A FIFO eviction
record indicates the cache sizes for which an object does exist
in the cache, whereas an LFU eviction record indicates the
cache sizes for which it does not. Each eviction record in a
FIFO eviction map records the cache size S and the entry
time of the object at size S. The record indicates an object’s
entry time for caches of sizes §', where S < 8 < S,.s and
Syext 18 the cache size stored in the eviction record with the
next largest cache size. Algorithm 2 contains the pseudocode
for the eviction map’s three main operations.

On every access to an object, as the object must exist at
all cache sizes immediately after it has been accessed, a new
eviction record with a cache of size 1 is inserted into the
object’s associated eviction map if a record with a cache size
of 1 does not already exist. This eviction record stores the

Algorithm 2: Eviction map for FIFO cache object.

Ref tobject
Record :map — Map < cache_size,timestamp >
1 Eviction Map FIFO:

2 Function Insert(cache_size):
3 rec < map.find_largest(< cache_size)
4 rec.cache_size = cache_size + 1
5 map.remove(< cache_size)
6 Function FindSmallestExisting():
rec <— map. find_smallest ()
8 return rec.cache_size
9 Function GetSortingKey(cache_size):
10 rec <— map. find_largest(< cache_size)
11 if /rec then
12 | return0
13 return rec.timestamp

entry time (i.e., the current time) of the object for any cache
size smaller than the object’s reuse distance (i.e., any cache
size at which the object does not currently exist).

An eviction record also gets added for an object O when
it gets evicted. To insert a new eviction record for a cache of
size S into the eviction map of O, we first locate the record
with the largest cache size S’ such that S < §. This record
holds the object’s entry time E into a cache of size S. We then
insert a new eviction record with cache size S+ 1 and entry
time E into the eviction map to indicate this object is being
evicted from all caches of sizes S’ < S. Finally, we perform
pruning by removing all records with cache sizes S’ < §.

The reuse distance of an accessed object can be determined
using the object’s eviction map as the smallest cache size S
contained in the eviction records. By definition, a cache of
size § is the smallest cache which contains the object.

When reconstructing the stack of a cache of size S, the
objects’ sorting keys are their entry times into the cache. To
determine the entry time of an object O in a cache of size S,
we find the eviction record with the largest cache size S in
O’s eviction map such that S’ < S. The entry time contained
in this record is the object’s entry time for a cache of size S.

2Q. The 2Q eviction map maintains two sets of eviction
records: one corresponding to the Al stack, and the other
corresponding to the Am stack. While 2Q further partitions
the A1 stack into two stacks, Alin and Alout, we model both
as a single combined FIFO stack with a single set of eviction
records since objects evicted from Alin are placed at the head
of Alout. The position in the combined FIFO stack deter-
mines whether an object being accessed a second time should
be promoted to Am. Each record in the A1 set of eviction
records holds the same information as FIFO eviction records
and can be used to determine the entry time of an object in
the A1 stack. For an object to exist in the Am stack, it must
have been accessed at least twice. We can track the number
of accesses of each object at varying cache sizes using the
same method we used for LFU eviction records. The handling

96 22nd USENIX Conference on File and Storage Technologies

USENIX Association

Algorithm 3: Eviction map for 2Q cache object.

Ref tobject

Record :al_map — Map < cache_size,timestamp >
Record :am_map — Map < cache_size,count >
Record :Kin,Kout

1 Eviction Map 2Q:

2 Function Insert(cache_size):

3 insert_al(cache_size * (Kin+ Kout))

4 insert_am(cache_size)

5 Function FindSmallestExisting():

6 al_rec <+ al_map.find_smallest() /(Kin+ Kout)
7 am_rec < am_map.find_smallest(count > 2)

8 if Jam_rec then

9 L return al_rec.cache_size

10 return am_rec.cache_size

11 Function GetSortingKey(cache_size):

12 alin_size < cache_size x Kin
13 alout_size < cache_size x (Kin* Kout)
14 alin_rec < al_map.find_largest(< alin_size)
15 alout_rec < al_map.find_largest (<al uutisize)
16 if lalout_rec then
17 | return Al(alin_rec.timestamp)
18 am_exists <— map. find_any(> alin_size and
< alout_size and ob ject.global _count — count > 2)
19 if Jam_exists then
20 L return Al(alout_rec.timestamp)
21 return Am(object.last_access_time)

of an access to the eviction map’s associated object and the
insertion of a new eviction record are done using the same
methods previously described for the LFU and FIFO evic-
tion maps. Algorithm 3 contains the pseudocode for the 2Q
eviction map’s three main operations.

An object will have different a reuse distance depending on
whether it is in the A1 or the Am stack. Therefore we calculate
two different reuse distances assuming the object is in each
stack and select the smaller value (as the cache associated
with the larger reuse distance will inherently also contain the
object according to the inclusion property). Similar to the
FIFO eviction map, we find the smallest A1 stack of size S4;
which contains the object by finding the eviction record in
the A1 eviction record set with the smallest cache size. The
corresponding cache size which contains the object is then
Sa1/(Kin+ Kout). We then search the Am eviction record
set for the eviction record with the smallest cache size which
has a local count > 2. This eviction record corresponds to the
smallest cache of size S4,, which contains the object in the Am
stack. If no such record exists, the object must exist in the Al
stack and the previously calculated cache size corresponding
to the A1 stack is selected as the reuse distance. Otherwise,
the reuse distance is min(Sa; /(Kin+ Kout),Sam).

When reconstructing a 2Q stack, we reconstruct the Al
and Am stacks separately. Unlike the previously described
policies, an object in a 2Q cache can exist in one of three
different stacks: Alin, Alout, or Am. To determine in which
stack an object exists for a cache of size S, we use the object’s

2Q eviction map to determine its FIFO entry time if it were to
exist in the Alin or Alout stack and its local count if it were to
existin the Am stack. As the size of the Alin and Alout stacks
are only a ratio of the total cache size, we find the object’s
entry time in the Alin and Alout stacks for caches of size
Satin = S* Kin and Sp1,, = S * (Kin + Kout), respectively.’
If no entry time is found for the object in the Alout stack, it
must exist in the A1 stack with the associated Alin entry time.
If an entry time is found for the object in the Alout stack, we
search the Am eviction records to determine if the object has a
local count > 2 for a cache of size Sa1in <5 < Sa1ow- If such
a record exists, it indicates the object has been accessed at
least twice while existing in the Alout stack and is therefore
in the Am stack. Otherwise, it is in the A1l stack with the
associated Alout entry time.

The implementation of an eviction map for the S3-FIFO
eviction policy [34] is a simple adaptation of the eviction
map for the 2Q eviction policy.” We believe a similar tech-
nique would work for other multi-stack eviction policies (e.g.,
ARC [35]) and leave this for future work.

LRFU. The LRFU eviction map is implemented similarly to
that of FIFO. Each object in a cache has an associated CRF
value (§2.1). Each eviction record in an LRFU eviction map
contains the cache size S and the CRF value of the object at
S. Such a record identifies the CRF value of the associated
object for caches of sizes S, where S < 8’ < Spexr and Spey
is the cache size stored in the eviction record with the next
largest cache size.

Similar to when using a FIFO eviction map, the reuse dis-
tance of an accessed object can be determined using the ob-
ject’s eviction map as the cache size contained in the eviction
record with the smallest cache size.

On each access to object O, a new eviction record is added
to O’s eviction map with S set to 1 and CRF set to F(0).
Moreover, the CRF value of each eviction record is updated
using the current CRF value and the object’s last access time.
Each time an object O is evicted, a new eviction record is
inserted into O’s eviction map. This process is identical to
that of a FIFO eviction map.

When reconstructing the stack of a cache of size S, the

5Here, we use the combined size of the Alin and Alout stacks when
searching for the object’s entry time in the Alout stack as the stacks behave
as one coherent FIFO stack.

%We have also designed eviction maps to support the S3-FIFO eviction
policy [34]. It uses three sets of eviction records: one for the “small” stack,
one for the “main” stack, and one to track the number of accesses to each
object (as with LFU and 2Q eviction records). When reconstructing the S3-
FIFO stack, Kosmo reconstructs a separate stack for the “small” and “main”
stacks (the “ghost” stack is inherently maintained by the object’s existence
in Kosmo’s global table). When updating the eviction maps of objects, if an
object in the “main” stack is selected for eviction though has a local count
> 1, it’s local count is reduced by 1 and its eviction record is not further
updated. We measured similar performance results (including throughput,
memory usage, and accuracy) as with that of 2Q in §4.4. Further details on
the implementation of Kosmo’s eviction map for the S3-FIFO eviction policy
and its evaluation are omitted due to space limitations.

USENIX Association

22nd USENIX Conference on File and Storage Technologies 97

objects in the stack are ordered by their CRF values from
smallest to largest. To determine the CRF value of an object
O in a cache of size S, we find the eviction record with the
largest cache size S in O’s eviction map such that §' < S. The
CRF value contained in this record is the object’s CRF value
at a cache of size S.

LRU. Because the LRU eviction policy adheres to the strict
inclusion property, the order of the objects in the simulated
caches (of different sizes) will always be the same and can be
determined using the objects’ last accessed times.” By simply
storing the reuse distance D of each object as the sole eviction
record in its eviction map, Kosmo can reconstruct the stack of
a cache of size § by first determining which objects exist in
the cache (any object where its reuse distance D’ < S), then
ordering the objects that exist by their last access times.

As an object is moved to the front of the LRU stack each
time the object is accessed, immediately after, it will exist in
the stacks of all caches, regardless of size, until it is again
evicted from a cache. Therefore, each time an object is ac-
cessed, its associated eviction map updates the object’s stored
reuse distance to 1 to indicate it now exists at all cache sizes.

Upon each access to an object, to select which objects to
evict from the reconstructed cache stacks, an object may be
selected for eviction from multiple of these caches. As the
object’s eviction map has only one eviction record, the object
is evicted from the cache with the largest size. In doing so, as
LRU adheres to the inclusion property, Kosmo is effectively
evicting the object from all caches of smaller sizes as well.

MRU. The implementation of an eviction map for the MRU
eviction policy is virtually identical to that of the LRU policy
except that the sorting key in the MRU eviction map is the
negative value of the object’s last access time.

3.6 Variable object sizes

The Kosmo algorithm described thus far generates MRCs
assuming the cache is being used for fixed-size objects. How-
ever, modern applications use caches to store objects of vary-
ing size (e.g., key-value caches). As such, the MRCs gener-
ated by these algorithms may not adequately represent the
miss ratios experienced by the caches under these workloads.
Figure 5 demonstrates the difference in MRCs for the same
workload when taking variable-sized objects into account ver-
sus not taking them into account. It is evident that these two
MRC:s differ significantly and variable-sized objects should
be accounted for accordingly in MRC generation algorithms.

With fixed-sized objects, Kosmo inserts an eviction record
into the eviction map of only one object when a new object
is accessed. However, with variable-sized objects, more than
one object may need to be evicted. A simple modification

7In practice, one would always generate an MRC for the LRU eviction
policy using SHARDS and Olken as it is far more efficient than any other
known methods. We present a method of generating this MRC using Kosmo
simply to demonstrate Kosmo’s generality.

Fixed

0.8 Variable
5=l
4@ 0.6
a 04
=

0.2

0+
0 10 20 30 40 50 60 70
Size (GiB)

Figure 5: MRCs for the MSR web workload [23] for fixed versus
variable-sized objects using the LFU eviction policy.

allows the algorithm to handle variable-sized objects. While
a cache’s stack is being reconstructed, the cache’s used size is
calculated by summing the size of all objects which exist in
the cache. Objects are then evicted from the top of the stack
until the total used size of the cache is less than or equal to
the cache’s size.

3.7 TTLs

Taking time-to-live (TTL) parameters into account can signif-
icantly affect the resulting MRC [36]. Minor modifications
to the Kosmo algorithm can allow for the support of TTL
parameters for objects. When an object is first accessed, a cor-
responding expiry time is calculated based on its TTL. If the
TTL is 0, no expiry time is specified. Expiry time describes
the time at which the object should be evicted from all caches,
regardless of size. To handle this in Kosmo, when iterating
through the global table upon each access to reconstruct a
cache’s stack, each object’s expiry time is compared against
the current time (i.e., the time of the current access). If the
object has not expired and exists in the cache, it is added to
the stack; otherwise, it is excluded.

3.8 Simultaneous MRC generation

One key advantage of Kosmo is its ability to generate MRCs
for multiple eviction policies simultaneously in a single pass.
In the previous descriptions of eviction maps, each object in
the global table has one associated eviction map. The type of
eviction map used is based on the eviction policy for which
an MRC is being generated. A simple extension to the global
table to allow each object to have multiple associated eviction
maps — one for each eviction policy — allows Kosmo to recon-
struct the internal stack of any cache size with any eviction
policy for which an eviction map has been defined.

Minor modifications to the previously described Kosmo
algorithm (§3.2) must be made to support multi-policy MRC
generation. As an MRC must be generated for each eviction
policy, the algorithm must maintain a separate histogram per
policy. Upon access, an object’s reuse distance is calculated
for each eviction policy and its corresponding histogram is
updated. Moreover, each policy being considered will need
its own cache simulations, and each cache’s stack is recon-
structed in the policy-specific way independently.

98 22nd USENIX Conference on File and Storage Technologies

USENIX Association

4 Evaluation

We evaluated Kosmo using 52 publicly-accessible cache ac-
cess traces from MSR [23], Twitter [3], and SEC [37, 38].
Table 2 shows a summary of the datasets we used in our eval-
uation. For the Twitter dataset, we used the recommended
traces as specified by Twitter [39] as well as 7 other randomly
selected traces in the dataset.® Similar to prior studies, we only
considered the GET/READ accesses in each trace [20, 40].

For LFU and FIFO, we evaluated Kosmo’s performance
using all 52 access traces. For 2Q and LRFU, we used all
access traces in the MSR and SEC datasets, and 5 randomly
selected access traces the Twitter dataset.’

We ran both Kosmo and MiniSim with three configura-
tions of SHARDS: one fixed-rate and two fixed-size. The
authors of SHARDS noted that for fixed-rate SHARDS, an R
value of 0.001, and for fixed-size SHARDS, an S,,,,, value of
2,048 produce reasonably accurate MRCs [17]. We selected
these same values for our simulations, but also used fixed-size
SHARDS with an S,,,4, value of 1,024 to examine the memory
and throughput benefits as well as the reduction in accuracy.
For all fixed-size configurations of SHARDS, we used an
initial sampling rate of R = 0.1 as we found this produces
accurate results.

4.1 MiniSim implementation

We implemented the MiniSim algorithm as described by the
original authors of the paper, with the same configuration pa-
rameters [18]. The authors only describe MiniSim configured
using the fixed-rate SHARDS variant; therefore, we extended
MiniSim to also support the fixed-sized SHARDS variant.

Unlike fixed-rate SHARDS, which keeps the sampling rate
R constant throughout the access trace, fixed-size SHARDS
gradually decreases R to ensure that at any given time there
are at most S, distinct objects in the MRC generation algo-
rithm’s internal data structures. SHARDS tracks these unique
objects in a set S. To extend MiniSim to support fixed-size
SHARDS, we initially scale each simulated cache size by
the initial sampling rate R. For each access, if the sampling
rate R is decreased to Ry, we remove all objects no longer
in S from all simulated caches. We then rescale the size of
each simulated cache by Ry, using the eviction policy of
the cache. A key insight is that when rescaling the size of a
simulated cache, we also rescale the cache’s access counter
(i.e., the number of accesses the cache has observed) and hit
counter by the factor Rye,/Roia-

The implementation of MiniSim described in the original
paper statically allocates the required memory for each simu-
lated cache before processing an access trace. This is possible
as the sampling rate R, and thus the size of each simulated

8The randomly selected traces are: clusterl, cluster3, clusters8,
clusterl0, cluster26, cluster50, and cluster53.

9The randomly selected traces are: cluster?, cluster22, cluster3l,
cluster45, and cluster50.

Table 2: Access trace datasets used in our simulations.

Dataset Access traces Total accesses
MSR [23] 13 434,212,008
Twitter [3] 24 99,200,180,813
SEC [37, 38] 15 26,482,889,754

cache, is fixed. In our extension, to support a varying sam-
pling rate, we allocate memory dynamically so as to be able
to release memory when R decreases.

Our LFU implementation follows a well-known algorithm
optimized for throughput to allow for constant time com-
plexity for each access [41]. Our implementation of 2Q fol-
lows that described by the original authors [29]. We used Kin
and Kout values of 25% and 50%, respectively, for both our
Kosmo and MiniSim simulations. These were the same val-
ues used by the original authors. Our implementation of the
LRFU eviction policy follows the description in the original
paper [27]. We arbitrarily selected a A value of 0.5 for our
experiments though experimented with other values of A, such
as 0.001, and found the results to be similar.

4.2 Environment

All experiments were done on Ubuntu 22.04.2 with an
AMD Ryzen Threadripper 3990x (64 cores) with 256GB of
DDR4 — 3200MHZ DRAM. The access traces were stored
in binary format on a Sabrent Rocket Q 8TB. Both Kosmo
and MiniSim use a thread pool with separate threads for each
of Kosmo’s reconstructed stacks and MiniSim’s simulated
caches. We tested various thread pool sizes and noticed the
best performance for MiniSim when the thread pool’s size
was equal to the number of cores. Kosmo’s performance re-
mained the same after the thread pool’s size exceeded the
configured granularity.

4.3 Metrics

Three metrics were used in the evaluation of the algorithm:
memory usage, throughput, and accuracy.

Memory usage. To measure the memory usage of each al-
gorithm, for each access trace, we ran the algorithm in an
isolated process and measured the high water mark [42] after
it had processed the entire access trace. This metric has been
used in prior work to evaluate the memory usage of MRC
generation algorithms [17].

Throughput. To measure the throughput of each algorithm,
for each access trace, we divided the total runtime by the
number of accesses in the trace. IO time is excluded from the
measurement of the total runtime.

Accuracy. To measure the error of both Kosmo and MiniSim,
we calculated the mean absolute error (MAE) of each of the
generated MRCs using the corresponding exact MRC. As no
algorithm exists capable of generating exact MRCs for the
LFU, FIFO, 2Q, and LRFU eviction policies, we performed
100 full simulations of caches of varying size (evenly dis-

USENIX Association

22nd USENIX Conference on File and Storage Technologies 99

tributed over the access trace’s working set size) for each
policy and for each access trace. These 100 points are the
same points selected when running MiniSim. To measure the
error, we found the MAE by calculating the difference be-
tween the exact MRC and the approximate MRCs generated
by Kosmo and MiniSim at these points.

4.4 Results

Figures 6-8 show the performance results of Kosmo and Mini-
Sim. For each algorithm, the range of results for the various
traces in the datasets is shown.

Figure 6 shows the memory usage results of Kosmo and
MiniSim for the LFU, FIFO, 2Q, and LRFU eviction poli-
cies. We found that Kosmo uses an average of 3.6 times less
memory, and up to 36 times less in the extreme case. Figure 7
shows the throughput results of Kosmo and MiniSim for the
LFU, FIFO, 2Q, and LRFU eviction policies. We found that
Kosmo has an average throughput 1.3 times higher than that
of MiniSim. Notably, for the 2Q eviction policy, Kosmo has
a lower average throughput than MiniSim (0.54 times that
of MiniSim). This is attributed to Kosmo reconstructing two
stacks (A1 and Am) on each access.

Figure 8 shows the MAE results of Kosmo and MiniSim for
the LFU, FIFO, 2Q, and LRFU eviction policies. We found
Kosmo and MiniSim to typically generate MRCs with sim-
ilar accuracy. Across all simulations, Kosmo and MiniSim
had an average MAE within 0.25% of one another. Although
Kosmo generates MRCs with lower MAEs, on average, for
LFU and LRFU (0.16% and 0.86% lower for LFU and LRFU,
respectively), it generates MRCs with higher MAEs, on av-
erage, for FIFO and 2Q (0.44% and 1.56% higher for FIFO
and 2Q, respectively). This is attributed to the higher rates of
violations of the inclusion property for FIFO and 2Q, which
we show in §4.5. Further, although the average MAE for the
MRCs generated by Kosmo for 2Q is 1.56% higher than those
generated by MiniSim, the median is only 0.35% higher. This
is attributed to the high MAE of one access trace, srcl in the
MSR dataset [23], which has an unusually high MAE. This
access trace violates the inclusion property at a significantly
higher rate than other access traces.

To evaluate the CPU usage of Kosmo and MiniSim, we
measured the CPU time per access for each access trace. Fig-
ure 9 shows that Kosmo’s CPU time per access is roughly
1.85 times higher than that of MiniSim for LFU and 2 times
higher for FIFO, 2Q, and LRFU. The inconsistency between
the lower average CPU time per access of MiniSim than that
of Kosmo, and the higher average throughput of Kosmo than
that of MiniSim can be attributed to MiniSim’s threads idling
more frequently than Kosmo’s threads.

To evaluate the effects of varying the number of MiniSim’s
simulated caches on its performance, we also tested MiniSim
with 20 and 50 simulated caches for the LFU eviction policy.
With 20 simulated caches, MiniSim consumes roughly 1.2
times the memory of Kosmo on average and exhibits roughly

10 GiB
LFU FIFO 2Q LRFU
1GiB
ral
<}
£ 100 MiB
Q
- it f
10 MiB l L g & i ;L
1 MiB
@"?j?’0%)/15&%’;?’0%@45&%@%&%@%c?’"')ja&@"5/16&47’4‘_’@4745/%&47@%&%@%&
S S S S S S o S S S S
LYY UL N LY VLS OLY ILY NS IS NSNS O IN
B R e R T g g
S R (X3 oxra, o)

Figure 6: Memory usage of Kosmo and MiniSim for all eviction
policies. Note the logarithmic scale of the y-axis.

100000

i

1000
100

Throughput (accesses/ms

10

[S T SIS ST S SUES S SR SUES S SIS
R A S A 5 A)
G AL SRR AL SRE A A IR A

Figure 7: Throughput of Kosmo and MiniSim for all eviction policies.
Note the logarithmic scale of the y-axis.

20 LFU FIFO 2Q LRFU
18
16
14
®12
w10
s 8
6
4
: Lithell
0 - : i
S R S A S A T,

RR O FERPFEHERP S $EFS
0«";’70%,% 0«"7970%,70 0«";’705{9?9 e Al

Figure 8: MAE of Kosmo and MiniSim for all eviction policies.

1000 LFU FIFO 2Q LRFU
= 100
=
g %3%1
F o

0

Figure 9: CPU time per access for the LFU, FIFO, 2Q, and LRFU
eviction policies for MiniSim (left, black) and Kosmo (right, red)
using fixed-sized SHARDS (Spax = 2,048).

similar throughput, however it has roughly 2 times the MAE
of Kosmo. With 50 simulated caches, MiniSim consumes
roughly 2.3 times the memory of Kosmo and has 10% lower
throughput with roughly identical MAE. Notably, as discussed
in §2.3, the Cy,4x value of MiniSim must be selected before

100 22nd USENIX Conference on File and Storage Technologies

USENIX Association

knowledge of the access trace, therefore using a low number
of simulated caches such as these may result in unobservable
points of interest on the MRC.

4.5 Inclusion property violations

Figure 10 shows the percentage of accesses for which a vio-
lation of the inclusion property occurs (i.e., accesses which
reference an object that does not exist in a cache of size S
though exists in a cache of size §' < S) for the LFU, FIFO,
2Q, LRFU, and MRU eviction policies across all access traces
in the MSR dataset [23]. We found these violations by simu-
lating 100 caches of varying sizes evenly distributed over the
access trace’s working set size and, for each access, finding
the smallest simulated cache in which the object exists, then
searching for a larger cache in which it does not.

To examine the severity of these violations, indicated by
the difference between the size of the smaller cache wherein
an object exists and the larger cache wherein it does not, we
repeated these simulations with 50 and 10 simulated caches.
This increases the size intervals between the simulated caches
and thus, if the number of violations remains high, we can
infer the violations occur in large ranges of cache sizes.

For the LFU eviction policy, we found that 1.49% of ac-
cesses violated the inclusion property when measured with
100 simulated caches. This reduces by 40.91% and 99.3%
to 0.88% and 0.01% when measured with 50 and 10 points,
respectively. For the FIFO eviction policy, we found that
20.61% of accesses violated the inclusion property with
100 points, reducing by 18.46% and 77.23% to 16.81% and
4.69% for 50 and 10 points, respectively. For the 2Q eviction
policy, we found that 10.49% of accesses violated the inclu-
sion property with 100 points. This reduces by 39.39% and
84.25% to 6.36% and 1.65% for 50 and 10 points, respec-
tively. We found that violations of the inclusion property are
rare for the LRFU eviction policy (0.08% of accesses violated
the inclusion property with 100 points). The higher rates of
violations of FIFO and 2Q can explain the higher MAEs of
MRCs generated by Kosmo for these policies, however these
errors are typically negligible. Interestingly, we found that
MRU violates the inclusion property at a higher rate than the
other evaluated eviction policies with an average of 29.12%
when simulated with 100 points, while MRU is often consid-
ered to not violate the inclusion property [18, 43—45].'0

5 Related work

Much prior work has focused on improving the performance
of in-memory caches [29, 32, 33, 46-55]. Many studies have
suggested new eviction policies to improve on observed limi-
tations of policies such as LRU [27, 29, 35, 50, 53, 56-60].
There have been many proposed MRC generation algo-
rithms [14-20, 30, 40, 44, 61-64], however, these are largely

10We note that violations of the inclusion property only occur for the MRU
eviction policy when considering variable-sized objects.

—~ 80 LFU FIFO 2Q LRFU
70
2 60
250
§ 40
% 30
! ;
18 s K d
Q%% 0 0 0 % o 9V 0 Z W %

Figure 10: Ratio of accesses for which a violation of the inclusion
property occurs for the LFU, FIFO, 2Q, LRFU, and MRU eviction
policies across all workloads in the MSR dataset [23] when simu-
lated with 100, 50, and 10 points.

focused on the LRU eviction policy. Beckmann and Sanchez
describe a probabilistic method of generating MRCs for other
age-based eviction policies [61], such as protecting distance
based policy (PDP) [53] or inter-reference gap distribution
replacement (IGDR) [59].

Yu et al. propose an extension to MiniSim, called DF-
Shards, to modify the number of simulated caches during
runtime [44]. We found that the cost of instantiating a new
simulated cache significantly reduces the throughput of DF-
Shards making it unsuitable for online MRC generation.

MRCs are widely used to improve the performance of
caching systems [46, 65—69]. Talus partitions caches to re-
move identified cliffs in MRCs [46]. Cliffthanger identifies
and flattens cliffs noticed in an MRC in real-time, while pro-
cessing an access trace [32]. mPart uses MRCs to manage
the allocation of caches in multi-tenant caching servers [66].
Dynacache also uses MRCs to manage cache allocation; how-
ever, the authors also note that modifying the eviction policy
in real-time can improve cache performance [68].

6 Concluding remarks

In this paper, we propose Kosmo, a novel method for the
simultaneous generation of miss ratio curves (MRCs) for
multiple eviction policies. We showed that the current method
of generating MRCs for eviction policies that do not adhere to
the strict inclusion property have significant memory overhead
and are therefore not suitable for online MRC generation. Our
experimental results show that Kosmo uses significantly less
memory than MiniSim configured with 100 simulated caches
while maintaining similar accuracy. Kosmo uses 3.6 times
less memory than MiniSim on average, up to 36 times less in
the most extreme case. Kosmo has an average throughput 1.3
times that of MiniSim.

In the future, we plan to expand Kosmo’s supported evic-
tion policies to more complex policies, such as LHD [50],
LIRS [70], or ARC [35]. We also plan to improve on Kosmo’s
throughput by reducing its computational overhead through
the use of more specialized data structures.

Acknowledgements. We thank the reviewers for their con-
structive comments. We particularly thank our shepherd Carl
Waldspurger, whose guidance was instrumental in signifi-
cantly improving the paper.

USENIX Association

22nd USENIX Conference on File and Storage Technologies 101

A Artifact Appendix
Abstract

The Kosmo artifact provides our implementations of both
Kosmo and MiniSim which were used to generate the results
presented in this paper. The artifact repository includes three
tools: one to calculate an access trace’s working set size,
one to compute an access trace’s accurate MRC for a given
eviction policy, and one to generate an approximate MRC
(while measuring memory usage, throughput, and accuracy)
for both Kosmo and MiniSim. Specific details on each tool’s
usage can be found in the artifact’s README.

Scope

In our evaluation we make the following claims which can be

verified by this artifact:

e Kosmo has lower memory overhead than MiniSim by a
factor of 3.6 on average, up to a factor of 36.

e Kosmo has a higher throughput than MiniSim by a factor
of 1.3 on average.

e Kosmo has a roughly equivalent MAE to MiniSim.

Contents

The artifact compiles to three binaries (further details, includ-

ing the specific usage of each tool and format of input data is

provided in the artifact’s README):

1. wss: This tool calculates the working set size of a given
access trace.

2. accurate: This tool runs full simulations to compute the
accurate MRC for a given access trace.

3. mrec: This tool runs Kosmo or MiniSim (or both) to gen-
erate an MRC for a given access trace.

Hosting
The artifact can be found at: 10.5281/zenodo.10569925.

Requirements

The artifact was compiled and tested using Rust
v1.77.0-nightly and depends on Gnuplot v5.4 to
generate plots.

References

[1] J. Mertz and 1. Nunes, “Understanding
Application-Level Caching in Web Applications: A
Comprehensive Introduction and Survey of
State-of-the-Art Approaches,” ACM Computing
Surveys, vol. 50, no. 6, pp. 1-34, Nov. 2017.

[2] A.Wang, J. Zhang, X. Ma, A. Anwar, L. Rupprecht,
D. Skourtis, V. Tarasov, F. Yan, and Y. Cheng,
“InfiniCache: Exploiting ephemeral serverless functions
to build a cost-effective memory cache,” in Proc. Conyf.

on File and Storage Technologies (FAST’20), Feb. 2020,
pp. 267-281.

[3] J. Yang, Y. Yue, and K. V. Rashmi, “A Large-Scale
Analysis of Hundreds of In-Memory Key-Value Cache
Clusters at Twitter,” ACM Transactions on Storage,
vol. 17, no. 3, pp. 1-35, Aug. 2021.

[4] J. Yang, Y. Yue, and R. Vinayak, “Segcache: A
memory-efficient and scalable in-memory key-value
cache for small objects,” in Proc. Symp. on Networked
Systems Design and Implementation (NSDI’21), Apr.
2021, pp. 503-518.

[51 Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory
object caching framework with adaptive load
balancing,” in Proc. of the European Conf. on
Computer Systems (EuroSys’15), 2015, pp. 1-16.

[6] J. Kwak, E. Hwang, T.-K. Yoo, B. Nam, and Y.-R. Choi,
“In-memory caching orchestration for Hadoop,” in Proc.
Intl. Symp. on Cluster, Cloud and Grid Computing
(CCGrid’16), May 2016, pp. 94-97.

[7]1 Redis Labs, “Redis,” https://redis.io.
[8] Memcached, “Memcached,” https://memcached.org.

[9] Amazon, “Amazon Web Services,”
https://aws.amazon.com.

[10] Google, “Google Cloud,” https://cloud.google.com.

[11] Microsoft, “Microsoft Azure,”
https://azure.microsoft.com.

[12] IBM, “IBM Cloud,” https://www.ibm.com/cloud.

[13] T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A.
Kozuch, “Saving cash by using less cache,” in Proc.
Workshop on Hot Topics in Cloud Computing
(HotCloud’12), Jun. 2012.

[14] R. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
“Evaluation Techniques for Storage Hierarchies,” IBM
Systems Journal, vol. 9, no. 2, pp. 78-117, 1970.

[15] F. Olken, “Efficient Methods for Calculating the
Success Function of Fixed-Space Replacement
Policies,” Tech. Rep. LBL-12370, May 1981.

[16] Q. Niu, J. Dinan, Q. Lu, and P. Sadayappan, “PARDA:
A fast parallel reuse distance analysis algorithm,” in
Proc. Intl. Parallel and Distributed Processing Symp.
(IPDPS’12), Aug. 2012, pp. 1284—1294.

[17] C. A. Waldspurger, N. Park, A. Garthwaite, and
1. Ahmad, “Efficient MRC construction with SHARDS,”
in Proc. Conf. on File and Storage Technologies
(FAST’15), Feb. 2015, pp. 95-110.

102 22nd USENIX Conference on File and Storage Technologies

USENIX Association

https://zenodo.org/doi/10.5281/zenodo.10569924
https://redis.io
https://memcached.org
https://aws.amazon.com
https://cloud.google.com
https://azure.microsoft.com
https://www.ibm.com/cloud

[18] C. Waldspurger, T. Saemundsson, I. Ahmad, and
N. Park, “Cache modeling and optimization using
Miniature Simulations,” in Proc. USENIX Annual
Technical Conf. (USENIX ATC’17), Jul. 2017, pp.
487-498.

[19] X.Hu, X. Wang, L. Zhou, Y. Luo, C. Ding, and
Z. Wang, “Kinetic modeling of data eviction in cache,”
in Proc. USENIX Annual Technical Conf. (USENIX
ATC’16), Jun. 2016, pp. 351-364.

[20] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and
A. Warfield, “Characterizing storage workloads with
Counter Stacks,” in Proc. Symp. on Operating Systems
Design and Implementation (OSDI’14), Oct. 2014, pp.
335-349.

[21] B. T. Bennett and V. J. Kruskal, “LRU Stack
Processing,” IBM Journal of Research and
Development, vol. 19, no. 4, pp. 353-357, 1975.

[22] D. Carra and G. Neglia, “Efficient miss ratio curve
computation for heterogeneous content popularity,” in
Proc. USENIX Annual Technical Conf. (USENIX
ATC’20), Jul. 2020, pp. 741-751.

[23] D. Narayanan, A. Donnelly, and A. Rowstron, “Write
Off-Loading: Practical Power Management for
Enterprise Storage,” ACM Transactions on Storage,
vol. 4, no. 3, pp. 1-23, Nov. 2008.

[24] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web caching and Zipf-like distributions: Evidence and
implications,” in Proc. Conf. of the IEEE Computer and
Communications Societies (INFOCOM’99), Mar. 1999,
pp- 126-134.

[25] G. Hasslinger, J. Heikkinen, K. Ntougias, F. Hasslinger,
and O. Hohlfeld, “Optimum caching versus LRU and
LFU: Comparison and combined limited look-ahead
strategies,” in Proc. Intl. Symp. on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt’18), May 2018, pp. 1-6.

[26] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. Kat,
“It’s time to revisit LRU vs. FIFO,” in Proc. Workshop
on Hot Topics in Storage and File Systems
(HotStorage’20), Jul. 2020.

[27] S. Min, D. Lee, C. Kim, J. Choi, J. Kim, Y. Cho, and
S. Noh, “LRFU: A Spectrum of Policies that Subsumes
the Least Recently Used and Least Frequently Used
Policies,” IEEE Transactions on Computers, vol. 50,
no. 12, pp. 13521361, Dec. 2001.

[28] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava,
M. Tan et al., “Semantic data caching and replacement,”
in Proc. Intl. Conf. on Very Large Data Bases
(VLDB’96), Sep. 1996, pp. 330-341.

[29] T. Johnson, D. Shasha et al., “2Q: A low overhead high
performance buffer management replacement
algorithm,” in Proc. Intl. Conf. on Very Large Data
Bases (VLDB’94), Sep. 1994, pp. 439-450.

[30] T. Saemundsson, H. Bjornsson, G. Chockler, and
Y. Vigfusson, “Dynamic performance profiling of cloud
caches,” in Proc. Symp. on Cloud Computing
(SOCC’14), Nov. 2014, pp. 1-14.

[31] B. Reed and D. D. E. Long, “Analysis of Caching
Algorithms for Distributed File Systems,” SIGOPS
Operating Systems Review, vol. 30, no. 3, pp. 12-21,
Jul. 1996.

[32] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti,
“Cliffhanger: Scaling performance cliffs in web memory
caches,” in Proc. Symp. on Networked Systems Design
and Implementation (NSDI’16), Mar. 2016, pp.
379-392.

[33] A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman,
“Memshare: A dynamic multi-tenant key-value cache,”
in Proc. USENIX Annual Technical Conf. (USENIX
ATC’17), Jul. 2017, pp. 321-334.

[34] J. Yang, Y. Zhang, Z. Qiu, Y. Yue, and R. Vinayak,
“FIFO queues are all you need for cache eviction,” in
Proc. Symp. on Operating Systems Principles
(SOSP’23), Oct. 2023, pp. 130-149.

[35] N. Megiddo and D. S. Modha, “ARC: A self-tuning,
low overhead replacement cache,” in Proc. Conf. on
File and Storage Technologies (FAST’03), Mar. 2003,
pp. 115-130.

[36] S. Sultan, K. Shakiba, A. Lee, P. Chen, and M. Stumm,
“TTLs matter: Efficient cache sizing with TTL-aware
miss ratio curves and working set sizes,” Apr. 2024,
submitted to Proc. of the European Conf. on Computer
Systems (EuroSys’24).

[37] U.S. Securities and Exchange Commission (SEC),
“Edgar log file data sets,” https:
/Iwww.sec.gov/about/data/edgar-log-file-data-sets.

[38] J. Ryans, “Using the EDGAR log file data set,” 2017.
[Online]. Available:
https://dx.doi.org/10.2139/ssrn.2913612

[39] Twitter, “Github: twitter/cache-trace,”
https://github.com/twitter/cache-trace.

[40] X. Hu, X. Wang, L. Zhou, Y. Luo, Z. Wang, C. Ding,
and C. Ye, “Fast Miss Ratio Curve Modeling for
Storage Cache,” ACM Transactions on Storage, vol. 14,
no. 2, pp. 1-34, Apr. 2018.

USENIX Association

22nd USENIX Conference on File and Storage Technologies 103

https://www.sec.gov/about/data/edgar-log-file-data-sets
https://www.sec.gov/about/data/edgar-log-file-data-sets
https://dx.doi.org/10.2139/ssrn.2913612
https://github.com/twitter/cache-trace

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

D. Matani, K. Shah, and A. Mitra, “An O(1) Algorithm
for Implementing the LFU Cache Eviction Scheme,”
arXiv preprint arXiv:2110.11602, Oct. 2021.

The kernel development community, “The /proc
filesystem,” https://www.kernel.org/doc/html/latest/
filesystems/proc.html.

X. Gu and C. Ding, “On the theory and potential of
LRU-MRU collaborative cache management,” in Proc.
Intl. Symp. on Memory Management (ISMM’11), Jun.
2011, pp. 43-54.

A. Yu, Y. Tan, C. Xu, Z. Ma, D. Liu, and X. Chen,
“DFShards: Effective construction of MRCs online for
non-stack algorithms,” in Proc. Intl. Conf. on
Computing Frontiers (CF’21), May 2021, pp. 63-72.

X. Gu and C. Ding, “A generalized theory of
collaborative caching,” in Proc. Intl. Symp. on Memory
Management (ISMM’12), Jun. 2012, pp. 109-120.

N. Beckmann and D. Sanchez, “Talus: A simple way to
remove cliffs in cache performance,” in Proc. Intl.
Symp. on High Performance Computer Architecture
(HPCA’15), Feb. 2015, pp. 64-75.

J. Alghazo, A. Akaaboune, and N. Botros, “SF-LRU
cache replacement algorithm,” in Proc. Workshop on
Memory Technology, Design and Testing, Aug. 2004,
pp. 19-24.

P. Ranjan Panda, H. Nakamura, N. Dutt, and

A. Nicolau, “A data alignment technique for improving
cache performance,” in Proc. Intl. Conf. on Computer
Design VLSI in Computers and Processors (ICCD’97),
Oct. 1997, pp. 587-592.

D. Thiebaut, J. Wolf, and H. Stone, “Improving Disk
Cache Hit-Ratios Through Cache Partitioning,” IEEE
Transactions on Computers, vol. 41, no. 06, pp.
665-676, Jun. 1992.

N. Beckmann, H. Chen, and A. Cidon, “LHD:
Improving cache hit rate by maximizing hit density,” in
Proc. Symp. on Networked Systems Design and
Implementation (NSDI’18), Apr. 2018, pp. 389—403.

A. Blankstein, S. Sen, and M. J. Freedman,
“Hyperbolic caching: Flexible caching for web
applications,” in Proc. USENIX Annual Technical Conf.
(USENIX ATC’17), Jul. 2017, pp. 499-511.

X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding,

S. Jiang, and Z. Wang, “LAMA: Optimized
locality-aware memory allocation for key-value cache,”
in Proc. USENIX Annual Technical Conf. (USENIX
ATC’15), Jul. 2015, pp. 57-69.

[53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero,
and A. V. Veidenbaum, “Improving cache management
policies using dynamic reuse distances,” in Proc. Intl.
Symp. on Microarchitecture (MICRO’12), Dec. 2012,
pp- 389-400.

L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z.
Hu, “MEMTUNE: Dynamic memory management for
in-memory data analytic platforms,” in Proc. Intl.
Parallel and Distributed Processing Symp. (IPDPS’16),
May 2016, pp. 383-392.

A. Nasu, K. Yoneo, M. Okita, and F. Ino, “Transparent
in-memory cache management in Apache Spark based

on post-mortem analysis,” in Proc. Intl. Conf. on Big
Data (Big Data’19), Dec. 2019, pp. 3388-3396.

M. Bilal and S.-G. Kang, “Time aware least recent used
(TLRU) cache management policy in ICN,” in Proc.
Intl. Conf. on Advanced Communication Technology
(ICACT’14), Feb. 2014, pp. 528-532.

G. Einziger, R. Friedman, and B. Manes, “TinyLFU: A
Highly Efficient Cache Admission Policy,” ACM

Transactions on Storage, vol. 13, no. 4, pp. 1-31, Nov.
2017.

T. B. G. Perez, X. Zhou, and D. Cheng,
“Reference-distance eviction and prefetching for cache

management in Spark,” in Proc. Conf. on Parallel
Processing (ICPP’18), 2018, pp. 1-10.

M. Takagi and K. Hiraki, “Inter-reference gap
distribution replacement: An improved replacement
algorithm for set-associative caches,” in Proc. Intl. Conf.
on Supercomputing (ICS’04), Jun. 2004, pp. 20-30.

J. T. Robinson and M. V. Devarakonda, ‘“Data cache
management using frequency-based replacement,” in
Proc. Conf. on Measurement and Modeling of
Computer Systems (SIGMETRICS’90), Apr. 1990, pp.
134-142.

N. Beckmann and D. Sanchez, “Modeling cache
performance beyond LRU,” in Proc. Intl. Symp. on
High Performance Computer Architecture (HPCA’16),
Mar. 2016, pp. 225-236.

E. Berg and E. Hagersten, “StatCache: A probabilistic
approach to efficient and accurate data locality analysis,”

in Proc. Intl. Symp. on Performance Analysis of Systems
and Software (ISPASS’04), Mar. 2004, pp. 20-27.

D. Eklov and E. Hagersten, “StatStack: Efficient
modeling of LRU caches,” in Proc. Intl. Symp. on
Performance Analysis of Systems Software
(ISPASS’10), Mar. 2010, pp. 55-65.

104 22nd USENIX Conference on File and Storage Technologies

USENIX Association

https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://www.kernel.org/doc/html/latest/filesystems/proc.html

[64] D. Thiebaut, “On the Fractal Dimension of Computer
Programs and its Application to the Prediction of the
Cache Miss Ratio,” IEEE Transactions on Computers,
vol. 38, no. 7, pp. 1012-1026, Jul. 1989.

[65] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman,
Y. Zhou, and S. Kumar, “Dynamic tracking of page
miss ratio curve for memory management,” in Proc.
Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’04), Oct.
2004, pp. 177-188.

[66] D. Byrne, N. Onder, and Z. Wang, “mPart: Miss-ratio
curve guided partitioning in key-value stores,” in Proc.
Intl. Symp. on Memory Management (ISMM’18), Jun.
2018, pp. 84-95.

[67] M. K. Qureshi and Y. N. Patt, “Utility-based cache
partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches,” in Proc.
Intl. Symp. on Microarchitecture (MICRO’06), Dec.
2006, pp. 423-432.

[68] A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti,
“Dynacache: Dynamic cloud caching,” in Proc.
Workshop on Hot Topics in Cloud Computing
(HotCloud’15), Jul. 2015.

[69] Z. Liu, H. W. Lee, Y. Xiang, D. Grunwald, and S. Ha,
“eMRC: Efficient miss ratio approximation for
multi-tier caching,” in Proc. Conf. on File and Storage
Technologies (FAST’21), Feb. 2021, pp. 293-306.

[70] S. Jiang and X. Zhang, “LIRS: An efficient low
inter-reference recency set replacement policy to
improve buffer cache performance,” in Proc. Intl. Conf.

on Measurement and Modeling of Computer Systems
(SIGMETRICS’02), Jun. 2002, pp. 31-42.

USENIX Association 22nd USENIX Conference on File and Storage Technologies 105

	Introduction
	Background
	Eviction policies
	Inclusion property
	MRC generation

	Kosmo
	Kosmo data structures
	The Kosmo algorithm
	Optimizations
	Kosmo for LFU
	Other eviction policies
	Variable object sizes
	TTLs
	Simultaneous MRC generation

	Evaluation
	MiniSim implementation
	Environment
	Metrics
	Results
	Inclusion property violations

	Related work
	Concluding remarks
	Artifact Appendix

