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Abstract

In-memory caches play a critical role in storage environ-
ments by reducing data access latencies and loads on backend
data stores. A cache’s eviction policy significantly impacts
its attained miss ratio, and recent modeling techniques allow
for efficient evaluation of different eviction policies at run-
time. However, modern in-memory caches lack the ability to
switch between eviction policies at runtime, except for Re-
dis that can only switch between LRU and LFU. We present
PaperCache, an in-memory cache capable of switching be-
tween multiple different eviction policies at runtime. Our
evaluation shows that immediately after an eviction policy
switch, PaperCache’s behavior closely mirrors that of a cache
implementing the target policy exactly (with a miss ratio
typically within 1%) for a short period of time, after which
PaperCache’s behavior is fully inline with an exact policy
implementation. Further, PaperCache is able to periodically
and automatically switch to the policy exhibiting the lowest
miss ratio, reducing the overall miss ratio by up to 48.5%.
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1 Introduction

In-memory caches are pervasive in large-scale storage en-
vironments. They play an important role in reducing data
access latency and the load on backend data stores by serv-
ing data directly from DRAM [1-15]. They store frequently
accessed, “hot” data in the form of key-value pairs (referred
to as objects). Although DRAM offers faster data access, it
has a higher operational cost and is thus often significantly
smaller than the backend data stores. In-memory caches typ-
ically only hold a small subset of the data in the backend
stores; they use an eviction policy to select data for removal
from the cache to make room for new data to be inserted.

A cache’s eviction policy can significantly affect its per-
formance, typically measured as the cache’s miss ratio (i.e.,
the ratio of the number of accesses to data not found in
the cache to the total number of accesses) [8]. The least
recently used (LRU) eviction policy is the most widely de-
ployed policy, and is used as the default (and in most cases
only) policy in popular in-memory caches, such as Redis [16]
or Memcached [17]. However, many alternative eviction
policies exist, such as least frequently used (LFU), first-in-
first-out (FIFO), most recently used (MRU), 2Q [18], least re-
cently/frequently used (LRFU) [19], ARC [20], S3-FIFO [10],
LHD [11], or SIEVE [21], which have been shown to outper-
form LRU for specific workloads.

Recently proposed cache performance modeling tech-
niques, such as Kosmo [8] and MiniSim [22], are able to
accurately determine a cache’s optimal eviction policy based
on its workload and allocated size. These algorithms generate
miss ratio curves (MRCs) which plot a cache’s miss ratio as
a function of its allocated size. Unfortunately, most modern
caches do not support multiple eviction policies, and those
that do, such as Redis [16], make compromises on policy
accuracy to reduce management overhead (§2.1).!

This paper introduces PaperCache, a novel cache design
that supports dynamic switching between any eviction pol-
icy during runtime. PaperCache uses a unique eviction policy
approximation technique with a MiniStack to temporarily ap-
proximate the behavior of an eviction policy while switching
between policies and servicing new accesses. We evaluate the
performance of PaperCache and the accuracy of MiniStacks

ICacheLib [23] also supports multiple eviction policies, including arbitrary
user-definable policies. However, it does not support the dynamic switching
between them at runtime which we show is important in §2.3.
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using publicly-available real-world cache access traces from
Twitter [3], Cloudphysics [24], IBM [25], Tencent CBS [26],
Alibaba [27], and Wikipedia [28]. In §4, we show that Paper-
Cache can switch between eviction policies instantaneously
while continuing to service new accesses and achieves a
miss ratio within 1% of exact implementations of its evic-
tion policies for a short period of time. We demonstrate that
PaperCache’s ability to periodically switch to its most per-
formant eviction policy at runtime can reduce the miss ratio
by between 8.2% and 48.5% when compared to statically
configured eviction policies.

Contributions. We make the following contributions:

e We demonstrate that Redis’ eviction policy approxima-
tion technique leads to inaccurate policy behavior after
switching policies during runtime (§2.1).

e We demonstrate that the optimal eviction policy for a cache
can change over time (§2.3).

e We introduce and evaluate PaperCache, an in-memory
cache that supports the efficient dynamic switching be-
tween any eviction policy in real-time (§3).

Limitations. Our work has the following limitations:

e Our analysis is based on publicly-available workloads and
our findings may not apply to all caching environments.

e PaperCache has higher metadata memory overhead than,
say, Redis (10.8% and 70% higher when storing between
100,000 and 1,000,000 objects, respectively, when config-
ured with 8 eviction policies).

2 Background and motivation

In this section, we describe relevant prior work and the mo-
tivation for PaperCache. We first describe how Redis imple-
ments its LRU and LFU eviction policies, and how it switches
between them (§2.1). Next, we describe SHARDS, a sampling
technique which is used by PaperCache to reduce the over-
head of storing eviction policy metadata (§2.2). Finally, we
show that the optimal eviction policy for a cache may change
over time as motivation for PaperCache’s dynamic eviction
policy switching capabilities (§2.3).

2.1 Multi-eviction policy support in Redis

Popular open-source in-memory caches are rather limited
in the number of eviction policies they support. Mem-
cached [17] only supports LRU, while other caches, such
as CacheLib [23], support multiple eviction policies but can-
not switch between them at runtime. Redis supports LRU
and LFU and can switch between them at runtime [16]. In
Redis, switching the eviction policy is a passive configuration
change (i.e., it does not trigger any action by an idle cache).
Redis employs several performance optimizations, which
makes its eviction policies only approximations of LRU and
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Figure 1: Miss ratios of LFU, LRU, and Redis switching from

LFU to LRU at 40 hrs for the Cloudphysics w96 trace [24].

LFU, but which reduces its metadata memory usage. Two

key optimizations are:

e An object is allocated a 24-bit metadata field to store any
required data pertaining to the currently configured evic-
tion policy. For LRU, this is the last access time. For LFU,
this is the last access time with reduced precision (16 bits)
and the logarithmic frequency count (8 bits). There is only
one such field, so its content can only pertain to one evic-
tion policy at a time. On a policy switch, the content gets
updated to that of the new policy upon access to the object.
As a result, the behavior of the cache may deviate from
the expected behavior for a period of time.

o Redis does not maintain an LRU or LFU stack. To select an
object for eviction, a number of objects (5 by default) are
randomly selected and the oldest (in the case of LRU) or
least frequently accessed (in the case of LFU) is selected for
eviction.? This method of eviction policy approximation
causes the observed miss ratio to deviate from that of exact
implementations of the LRU or LFU eviction policies.

To observe the effectiveness of Redis’ ability to switch its

eviction policy between LRU and LFU, we instantiated a Re-

dis v8.0.1 cache of size 500MiB, initially configured with the

LFU eviction policy,® and measured its miss ratio compared

to exactly implemented LFU and LRU caches of the same

size. Fig. 1 shows the results as obtained over the duration
of the w96 trace in the Cloudphysics dataset [24]. At time

40 hours, the Redis eviction policy is switched from LFU to

LRU. The miss ratio of the Redis cache resembles that of LFU

before 40 hours with a period of high error between hours

18 and 40, due to its approximate implementation of LFU.

After 40 hours, the miss ratio of the Redis cache follows that

of LRU with an error of roughly 5%.*

>This method would allow Redis to support some other eviction policies
with minimal changes (e.g., in the case of FIFO, maintaining the object’s
entry time into the cache). However, adapting this eviction strategy to more
complex policies (e.g., ARC [20], LHD [11], LIRS [29], 2Q [18], S3-FIFO [10],
etc.) would likely be challenging.

3We use allkeys-1fu for LFU and allkeys-1ru for LRU.

*Interestingly, repeating this experiment, we noticed different results each
time, which can be attributed to Redis’ eviction policy approximation (i.e.,
randomly selecting N objects as candidates for eviction).
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Figure 2: Hourly LRU, LFU, and FIFO miss ratios for the Cloud-
physics w24 trace [24].

2.2 SHARDS sampling

Waldspurger et al. describe a sampling technique called
SHARDS, originally designed for use in efficient MRC gen-
eration [24].> SHARDS samples a stream of incoming cache
accesses using a configurable sampling rate R. On each ac-
cess, SHARDS computes T; = hash(K) mod P, where K is
the access key and P is a large static number (the authors
use P = 224). If T; < RP, the access is sampled. An important
characteristic of SHARDS is that once a key is sampled, it
will always be sampled.

2.3 Selecting the optimal eviction policy

The optimal® eviction policy for a workload can change over
time. Fig. 2 shows the miss ratios for the LRU, LFU, and
FIFO eviction policies for the Cloudphysics w24 trace [24]
for caches of size 20GiB and 32GiB. For a cache of size 20GiB,
at 25 hours, the optimal eviction policy is LFU. At 34 hours,
this changes to FIFO. Finally, at 48 hours, this changes back
to LFU. Selecting an eviction policy is further complicated
as the optimal eviction policy changes depending on the
cache’s allocated size. For the same Cloudphysics w24 trace,
using a cache size this time of 32GiB, at 25 hours, the optimal
eviction policy is FIFO, at 34 hours, this changes to LRU, and
finally at 48 hours, it changes to LFU.

3 PaperCache

In §2.3, we showed that the selection of the appropriate
eviction policy on a per-workload basis can have signifi-
cant benefits on performance. In this section, we present
PaperCache, a novel in-memory cache that can dynamically
switch between any eviction policy at runtime. Fig. 3 de-
picts PaperCache’s architecture. It has three notable design
elements. First, PaperCache maintains a full stack of object
metadata for the currently active eviction policy (e.g., LRU in
the figure). This stack is used to perform evictions (exactly)
according to the active policy, and hence the stack would

> Although, SHARDS has two variants: fixed-rate and fixed-size, we only
describe the fixed-rate variant as that is what is used in PaperCache.
%We define “optimal” as the eviction policy with the lowest miss ratio.
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Figure 3: An overview of PaperCache (LRU). Sections shown in
dashed rectangles run on separate threads.

be ordered by access recency for LRU, access frequency for
LFU, and so on. The stack is updated and cache evictions
are handled asynchronously by an eviction policy manager
(EPM) running on a separate worker thread.

Second, for each configured eviction policy, PaperCache
maintains an approximate stack of metadata, referred to as a
MiniStack. The SHARDS fixed-rate sampling algorithm [24]
is used to decide which objects are represented in the Mini-
Stacks, thus significantly reducing their memory overheads.
A MiniStack is used to temporarily decide which objects to
evict, if necessary, while the cache is switching policies.

Finally, metadata of each access is streamed to disk in
an append-only-log (AOL). The AOL is used to reconstruct
the full stack of a target eviction policy when PaperCache
switches policies.” This reconstruction is performed by a
separate temporary thread. The AOL contains a sliding win-
dow of access metadata (default = 7 days) to limit stack
reconstruction time.

When an existing object is accessed, or when a new object
is inserted, the object’s metadata is asynchronously sent to
the EPM which then: (i) updates the full stack of the cur-
rent eviction policy, (ii) updates all MiniStacks if sampled,
and (iii) pushes the access metadata to the AOL. The EPM
also asynchronously evicts objects from the cache (along
with their metadata) when the cache’s used size exceeds its
configured size. Similar to prior techniques [9], PaperCache
performs evictions lazily, which may cause short periods of
time wherein the cache’s used size exceeds its configured
size (although we found this to be negligible when process-
ing real-world access traces, which we demonstrate in §4.2).

7In the common case, we only store each access’s key as its metadata in the
AOL, however, some eviction policies may require more information about
each access to perform reconstruction (e.g., the size of the access). In such
cases, all required metadata of each access is saved to the AOL.
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However, performing these operations asynchronously re-
duces access latencies as eviction policy stack operations
occur off the main thread.

When the eviction policy is switched from policy P to
policy P’, PaperCache performs the following actions:

(1) Pauses writes to the AOL and buffers subsequent access’
metadata in memory.

(2) Starts to use the MiniStack of P’ for eviction decisions.

(3) Releases the full stack of P from memory.

(4) Reconstructs the full stack of P’ using the AOL.

(5) Starts to use the full stack of P’ for eviction decisions.

(6) Flushes buffered access’ metadata to P’ and the AOL, and
resumes subsequent writes to the AOL.

These actions are performed asynchronously while the cache

is servicing new accesses. If cache evictions must occur while

the stack is being populated, objects are evicted using the

MiniStack of P’. The cache therefore has a short period of

approximate behavior until the full stack is reconstructed.

In §4.6, we show that a cache subject to evictions from a

policy’s MiniStack exhibits a miss ratio within 1% of that

when it is subject to the policy’s full stack for a period of up

to 2.7 hours, on average.

To handle TTLs, PaperCache uses a priority queue of ob-
ject expiry times. This queue is managed by a separate time-
to-live manager (TTLM) running on its own thread. The
queue is checked every millisecond, and expired objects are
removed from the cache as well as the metadata structures.
(Expired objects are never returned to clients.)

Automatically switching eviction policies. Each Paper-
Cache MiniStack is analogous to a single simulation in Mini-
Sim [22]. The MiniStacks can therefore be used, at no ad-
ditional cost, to periodically identify which eviction policy
incurs the lowest miss ratio. This allows PaperCache to sup-
port an auto eviction policy where it automatically switches
to the eviction policy with the lowest miss ratio. We found
that performing this switch every 1 hour is effective.

4 Evaluation

In this section, we evaluate PaperCache by examining: (i) the
accuracy of its policy implementations compared to ideal im-
plementations after switching between policies (§4.1), (ii) the
ability of its lazy eviction scheme to keep the memory con-
sumed by the cached objects within the configured cache size
(§4.2), (iii) its metadata memory overhead (§4.3) and latency
performance (§4.4) compared to Redis, (iv) its CPU usage
when switching between eviction policies (§4.5), (v) the du-
ration for which MiniStacks provide reasonably accurate
policy evictions (§4.6), and (vi) its behavior when automat-
ically switching eviction policies (§4.7). In all experiments,
PaperCache is configured with 8 eviction policies: LFU, FIFO,
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Figure 4: Miss ratios of LFU, LRU, and PaperCache switching

from LFU to LRU at 40 hrs for the Cloudphysics w96 trace [24].

LRU, MRU, 20 [18], S3-FIFO [10], CLOCK, and SIEVE [21].2
We compare PaperCache to Redis in our evaluation as it is, to
our knowledge, the only in-memory cache that supports evic-
tion policy switching. To perform our evaluations, we used
access traces from Twitter [3], Cloudphysics [24], IBM [25],
Tencent CBS [26], Alibaba [27], and Wikipedia [28].

All experiments were done on Ubuntu 24.0.2 with an In-
tel i9-13900KS (24 cores) with 128GB of DDR5-4200MHz
DRAM. PaperCache was implemented in Rust v1.89.0 and
uses jemalloc as its memory allocator.!® Our implementation
of PaperCache is open-sourced at https://papercache.io.

4.1 Policy switching accuracy

To examine the effectiveness of PaperCache’s policy switch-
ing, we configured an instance of PaperCache of size 500MiB
with the LFU eviction policy and show its performance com-
pared to exact LFU and LRU caches of the same size for the
w96 trace in the Cloudphysics dataset [24], similar to the
experiment we performed for Redis in §2.1. At time 40 hours,
we switch PaperCache’s policy from LFU to LRU and reset
the hit and miss counters of the caches. Fig. 4 shows the
results. We observe that before 40 hours, PaperCache closely
tracks the miss ratio of LFU. After 40 hours, it switches to
LRU and immediately closely tracks the miss ratio of LRU
as well. (One can compare these results to those of Redis in
Fig. 1.) Similar to Redis, PaperCache’s eviction policy switch-
ing is a passive configuration change and we noticed no
measurable effect on access throughput or latency when
switching the eviction policy at runtime.

4.2 Lazy eviction performance

PaperCache’s lazy eviction scheme (where evictions occur off
the main thread) may result in short periods of time wherein
the memory used by cached objects exceeds the configured
maximum cache size (as SET accesses are not blocked for
evictions). Here, we evaluate the resulting overhead of using

8We use Kip, = 0.25 and Koy, = 0.5 for 2Q, and |S| = 10% for S3-FIFO.
We use the recommended traces in the Twitter dataset [3, 30].
10paperCache uses the same version of jemalloc as Redis v8.0.1.
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Figure 5: PaperCache used size versus WSS for the Cloud-

physics w96 trace [24].

Table 1: Memory overheads of Redis and PaperCache storing
between 1,000 and 1,000,000 unique objects.

1,000 10,000 100,000 1,000,000
Redis v8.0.1 15MiB  43MiB  176MiB 270MiB
PaperCache 12MiB  53MiB  195MiB 459MiB

lazy evictions. We initialized a PaperCache instance of size
2GiB and the LRU eviction policy, and we then applied the ac-
cesses in the Cloudphysics w96 access trace [24]. We measure
the aggregate size of objects in the cache versus the access
trace’s working set size (WSS) over the duration of the ex-
periment, where the WSS is the aggregate size of all unique
objects accessed thus far. Fig. 5 shows the results. Measured
after the WSS exceeds 2GiB, PaperCache’s used size is, on
average, within 0.01% that of the configured maximum size,
up to a maximum of 0.15%.

4.3 Memory overhead

PaperCache’s support of multiple eviction policies and the
switching between them comes at the cost of higher memory
overhead to maintain the full metadata stack (for the eviction
policy in place) and N MiniStacks, where N is the number
of configured eviction policies. To measure the extent of this
overhead, we compare PaperCache with Redis v8.0.1 [16],
both configured to use 2GiB and LRU. We inserted between
1,000 and 1,000,000 unique objects, using object sizes such
that the cached objects consume 1GiB in aggregate (so no
evictions would occur), and then measured the high water
mark (HWM) of the cache’s residency set size. Tbl. 1 shows
the overheads as the HWM minus 1GiB. PaperCache has be-
tween 10.8% and 70% higher memory overhead than Redis
when storing between 100,000 and 1,000,000 unique objects,
respectively, with 8 configured MiniStacks and a MiniStack
sampling rate of 0.1%. We note that PaperCache uses slightly
less memory than Redis when storing 1,000 objects which is
attributed to smaller initial allocations for its data structures.

4.4 Latency performance

We experimentally compare the performance of PaperCache
and Redis by measuring the latencies of GET and SET accesses.
For this, we instantiated PaperCache and Redis caches of size
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Table 2: Access latency percentiles of Redis and PaperCache
for all traces in the Cloudphysics dataset [24].
P99 (us) P99.9 (us) P99.99 (us)
GET SET GET SET GET SET
Redis v8.0.1 116 595 | 298 1,327 | 600 1,889
PaperCache 66 523 | 177 806 | 417 1,070
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Figure 6: Total CPU usage of PaperCache (initially under LRU)
when switching to the 2Q, S3-FIFO, and SIEVE eviction policies
for the Cloudphysics wo7 trace [24].

2GiB under LRU and performed the accesses in all access
traces in the Cloudphysics dataset [24] (106 access traces
comprising of over 2 billion total accesses) using 4 concur-
rent clients for each cache. Tbl. 2 shows the p99, p99.9, and
P99.99 percentile access latencies. We found that PaperCache
has 30.5% and 43.4% lower p99.99 latencies for GET and SET
accesses, respectively. These lower latencies are due to evic-
tions in PaperCache occurring off the main thread.

4.5 CPU usage

We examine PaperCache’s increased CPU usage while re-
constructing the stack of a new policy by performing policy
switches when processing the w@7 trace in the Cloudphysics
dataset [24]. Fig. 6 shows the total CPU usage of PaperCache
(allocated 64GiB) as it switches from LRU to 2Q, S3-FIFO,
then SIEVE. Although PaperCache has increased CPU usage
when a policy stack is being reconstructed after a policy
switch, we note that the extra CPU overhead occurs off the
main thread, so there is no impact on access latency.

4.6 MiniStack efficacy duration

During an eviction policy switch, while a MiniStack is being
used to perform evictions, the miss ratio of the cache can de-
viate from that of the exact eviction policy as evicted objects
are removed from the MiniStack and only sampled accessed
objects are added. To evaluate the efficacy of a MiniStack
in approximating the evictions of its corresponding policy,
we initialized two LRU caches of equal size: one subject to
evictions from a full LRU stack and the other from an LRU
MiniStack. We apply the same access trace to each cache and
measure the duration between when the first eviction occurs
to when the miss ratios of the two caches differs by > 1%,
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Figure 7: MiniStack efficacy durations for all considered
datasets. The bottom and top lines identify the minimum and
maximum results, respectively. The bottom and top of each box
are the 25" and 75!" percentile results, respectively. The X and
+ symbols indicate the mean and median results, respectively.
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Figure 8: Instances where each configured PaperCache eviction
policy achieves the lowest miss ratio for the w42 trace in the
Cloudphysics dataset [24].

which we refer to as the MiniStack’s efficacy duration. Each
cache is allocated 10% of the access trace’s WSS.

Fig. 7 demonstrates the results of this experiment for
873 workloads that include over 189 billion accesses. Here,
we found the average and median efficacy durations to be
2.7 and 1.1 hours, respectively. The largest access trace is
Twitter’s cluster18 trace [3] which includes 12.6 billion
accesses. Experimentally, we found that PaperCache recon-
structs a full stack at a rate of 18.2 million accesses per sec-
ond, on average, and thus PaperCache reconstructs the full
stack for cluster18 in 11.5 minutes. As this is significantly
less than the MiniStack efficacy duration, PaperCache’s miss
ratio will accurately track that of exact implementations of
its eviction policies during a policy switch.

4.7 Automatic policy switching behavior

We evaluate PaperCache’s ability to automatically switch
eviction policies. For this, we configure PaperCache to switch
to the corresponding policy of the MiniStack with the lowest
miss ratio every 1 hour. We used the Cloudphysics w42 access
trace [24] which spans 168 hours, and we configured Paper-
Cache with a size of 10% of the trace’s WSS. Throughout
this access trace, PaperCache (initially under LRU) performs
17 policy switches, reducing the miss ratio compared to LRU
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Table 3: % time each policy achieves the lowest and strictly
lowest miss ratios, where “strictly lowest” means it is not tied,
for the Cloudphysics w42 access trace [24].

Policy % time min. MR % time strictly min. MR
LFU 43.2 29.6
FIFO 10.1 0
LRU 11.8 0
MRU 24.9 13
20 10.1 0
S3-FIFO 42 314
CLOCK 11.9 0
SIEVE 25.4 12.4
£ 50

25

g 20

£

“ ry % T, 0 e‘% 0. %,
A Qf_ S

Figure 9: Miss ratio savings by performing eviction policy
switching compared to statically assigned eviction policies for
the Cloudphysics wo2 trace [24].

by up to 9.7%. Tbl. 3 shows the percentages of the total trace
duration where each eviction policy achieves the lowest
and strictly lowest miss ratio (where achieving the “strictly
lowest” miss ratio indicates it achieves a miss ratio lower
than that of any other eviction policy). The LFU eviction
policy has the best performance for the largest duration of
the access trace, achieving the lowest and strictly lowest
miss ratio for 43.2% and 29.6% of the total trace duration,
respectively. Fig. 8 shows the instances where each policy
achieves the lowest miss ratio over the duration of the trace.
PaperCache’s automatic eviction policy switching can con-
siderably reduce the miss ratio of the cache. Fig. 9 shows the
miss ratio savings achieved by PaperCache when performing
automatic eviction policy switching compared to statically
configured eviction policies for the w@2 access trace in the
Cloudphysics dataset [24]. We configured PaperCache with
an allocated size of 10% of the access trace’s WSS. Paper-
Cache reduced its miss ratio by between 8.2% and 48.5%.

5 Concluding remarks

In this paper, we introduced PaperCache, a novel in-memory
cache design which supports the dynamic switching between
any eviction policy at runtime. We demonstrated that a work-
load’s optimal eviction policy can change over time, rein-
forcing the need for PaperCache. We introduced our novel
eviction policy switching technique through the use of Mini-
Stacks and show how they can be leveraged to perform au-
tomatic eviction policy switching, which we showed can
reduce PaperCache’s miss ratio by up to 48.5%. In the fu-
ture, we plan to reduce PaperCache’s memory overhead and
extend it to support admission policies.
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