
AutoVM: Accelerating convolutional neural network
training with actively managed GPU virtual memory

by

Luyuan Chen

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

c© Copyright 2020 by Luyuan Chen

Abstract

AutoVM: Accelerating convolutional neural network training with
actively managed GPU virtual memory

Luyuan Chen

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2020

The size of neural networks a GPU can train is limited by the GPU’s memory capacity. Although GPU

virtual memory enables training arbitrarily large neural networks, such trainings are often accompanied

by severe performance penalties. Furthermore, popular frameworks for constructing machine learning

applications, like TensorFlow, have disabled using GPU virtual memory by default. We propose Au-

toVM, a software layer that can better manage GPU virtual memory in neural network training by

incorporating our understandings of neural networks. AutoVM schedules data transfers between GPU

and CPU memory to relieve the memory pressure on GPU; and in turn optimizes training speed. We

have integrated AutoVM into TensorFlow such that existing machine learning applications can benefit

from AutoVM with minimal effort. Our tests suggest that training VGG-19 using AutoVM can be at

most 2.5× faster compared to using default Nvidia virtual memory.

ii

Contents

1 Introduction 1

1.1 Motivating example . 3

1.2 Contributions . 4

1.3 Outline of the Dissertation . 4

2 Background 5

2.1 GPUs . 5

2.1.1 Hardware architecture . 7

2.1.2 Programming model . 11

2.1.3 Memory management . 14

2.1.4 GPU performance issues . 16

2.1.5 Accelerated libraries . 17

2.2 Deep neural network . 17

2.2.1 Layers in neural networks . 19

2.2.2 Inference and Training . 22

2.2.3 Gradient descent . 23

2.2.4 Workload in CNN training . 28

iii

2.3 TensorFlow . 28

2.3.1 Programming and execution model . 29

2.3.2 Computation graph . 31

2.3.3 Execution order . 31

2.3.4 GPU support . 32

3 Design 33

3.1 Motivation and Problem Statement . 34

3.2 Design Overview . 36

3.3 Policy . 37

3.3.1 Identifying tensors to move . 37

3.3.2 Identifying when to transfer tensors . 40

3.4 The mechanism . 45

3.5 Limitations . 46

4 Reverse engineering Nvidia virtual memory 48

4.1 cudaMemPrefetchAsync() v.s. cudaMemAdvise() 49

4.1.1 Method . 50

4.1.2 Findings . 51

4.2 Efficient memory transfer between devices . 51

4.2.1 Overlapping memory transfer with computation 51

4.2.2 Alternating the launch order . 53

4.2.3 Avoiding page faults . 54

4.2.4 AutoVM and pre-access . 55

iv

4.3 Throughput of cudaMemPrefetchAsync() transfers . 57

5 Implementation 58

5.1 Overview . 58

5.2 The policy . 60

5.2.1 Integrating AutoVM . 61

5.3 The mechanism MemOp() . 62

5.3.1 Adding support for cudaMemPrefetchAsync() 63

5.3.2 Accessing cudaMemPrefetchAsync() from an operation 63

5.4 Supporting pre-access . 64

6 Experiment 65

6.1 Environment setup . 65

6.2 Experiment design . 65

6.2.1 Experiment code . 66

6.2.2 Test cases . 67

6.2.3 Data collection methods . 69

6.3 Results . 70

6.3.1 AlexNet . 70

6.3.2 VGG-19 . 74

6.3.3 ResNet-152 . 75

6.3.4 Full Training Run Experiment . 76

6.3.5 Summary of results . 78

6.4 Discussion . 79

v

6.5 Future improvements . 79

6.5.1 Further optimizing AutoVM . 80

7 Related work 82

8 Conclusion 85

Bibliography 86

vi

Chapter 1

Introduction

GPUs have played a major role in catapulting machine learning from largely theoretical concepts to

practical solutions capable of solving a variety of non-trivial problems. Machine learning computations

are dominated by matrix and vector operations that can only be executed relatively slowly on traditional

CPUs. Meanwhile, GPUs were initially designed and optimized for graphical processing, which also

primarily involves matrix operations. Thousands of simple processing units within GPUs allow parallel

computation of such matrix and vector operations and thus execute such operations far more quickly than

CPUs. Because of the similarity of computations between graphics processing and machine learning, and

the speed at which they can execute these computations, GPUs have become the dominate infrastructure

for machine learning.

GPUs are CPU-controlled co-processors that have their own memory system, called global memory,

which is optimized for highly-parallel access from their compute cores. DMA (direct memory access)

engines on the GPU are responsible for transferring data between CPU and global memory over a

PCI-Express (or NVLink) interconnect. One key issue for many computationally intensive application

running on GPUs is the fact that the size of GPU memory is fixed and typically much smaller than

CPU memory (referred to as host memory in GPU terms) sizes.

In this dissertation, we identify methods to manage global memory to support running GPU appli-

cations efficiently with memory requirements larger than what is physically available on the GPU. We

specifically target convolutional neural networks (CNNs) that have been successfully applied to numer-

ous applications, including image classification, video analysis, and action recognition [25]. Over the last

1

Chapter 1. Introduction 2

decade, CNNs have been growing deeper with more layers and thus higher demands for compute and

memory resources. For example, the winner of 2012 ImageNet Large-Scale Visual Recognition Challenge

(ILSVRC), AlexNet [13], had 5 convolution layers and 2 dense layers. The winner of the 2015 contest,

ResNet-152 [7], had over 150 convolution layers. The amount of available memory on GPUs, on the other

hand, has not grown as fast as CNN memory requirements. For example, Google’s inception v4 [22]

model has 515 layers, consuming over 80GB of global memory during training with 64-image batches.1

To date, no commercially available one-GPU setup has enough GPU memory to train this network.

Consequently, these kinds of networks can only be trained by using expensive multi-GPU setups.

Modern Nvidia GPUs support virtual memory and paging. Virtual memory support allows applica-

tions to run even if they use more memory than what is physically available. Despite the convenience

provided by virtual memory, the default GPU virtual memory management policy is unaware of the

workload being processed on the GPU. As a result, GPU virtual memory is managed in a suboptimal

way with an attendant performance penalty.

Our work explores efficient GPU virtual memory management for CNNs. In particular, we propose

AutoVM that smartly manages the GPU virtual memory in CNN training. AutoVM is a software layer

that manages GPU virtual memory actively and transparently to the CNN application. Specifically,

AutoVM offloads tensors without immediate reuse to host memory, and prefetches offloaded tensors

back to global memory prior to their consumptions.

The computations in CNNs are often represented by a data flow graph (computation graph) in

machine learning frameworks like TensorFlow [2], Torch [5] and MxNet [3]. AutoVM analyses the

computation graph, identifies the data reuse patterns, and identifies the places in the computation graph

to insert the offload and prefetch commands. Once AutoVM inserts those commands at appropriate

locations in the computation graph, tensor offloads and prefetches are carried out automatically as the

computation graph executes. We have also designed an interface that allows machine learning engineers

to enable AutoVM with any existing machine learning application by changing only one line of code.

We have integrated AutoVM into TensorFlow to verify its effectiveness in a fully-functional machine

learning framework. Our experiments show that our method can achieve a speedup of up to 2.7× in

VGG-19 training, over Nvidia’s default GPU memory management policy.

1Training is the iterative process where the neural network ‘learns’. In each iteration, a batch of images is processed.
Successful training requires moderate batch sizes — typically 32 or higher — to be used.

Chapter 1. Introduction 3

1.1 Motivating example

CNNs have been widely adopted in applications that perform image analysis. A CNN image classifier

takes images as input and outputs categorical data that correspond to the classes of subjects present

in the input images, for example, “dog”, “cat”, or “aeroplane”. A typical CNN consists of a series of

different layers. A layer l takes in the input image x(l), processes it using its set of weights, w(l), and

outputs the resulting image2 y(l). The output is passed on as input to the next layer l + 1 as x(l+1).3

The image-like output from the last convolution layer is flattened to a vector and is then weighted in a

fashion similar to the weighted average, to produce the final categorical output. The process in which

input travels from the first layer to the last is called inference.

Before a network can be used for inference, however, it has to be trained. During training, a loss

function compares the network output with known correct values to measure the network’s performance

and produces a loss value. All layers’ weights are then updated to minimize the loss value and in turn

improve the network’s performance. The update process of each layer’s weights may require the layer’s

inference output, so layer l’s inference output is kept in memory until layer l’s weights are updated in

training. These previously generated outputs typically occupy a significant amount of memory. For

example, in VGG-216 [19], these outputs from a 32-image batch consume around 30GB of memory,

constitute over 85% of the total memory usage. Furthermore, training is processed in the opposite order

of inference, where the first layers processed in inference are visited the last in training. As such, the

time gap between the processing of a layer’s inference and training could be significant (hundreds to

thousands of milliseconds). Consequently, a substantial amount of data are kept in global memory for

an extended amount of time, despite not being actively used.

While the default virtual memory management policy available on modern GPUs can handle work-

loads that use more memory than what is physically available. The fact that the virtual memory system

lacks the domain knowledge of the workloads often encompasses poor memory management decisions.

For example, when convolution layer l’s output y(l) is no longer needed in inference, it can be paged

out immediately to free up global memory. However, the fact that Least-Recently-Used (LRU) is the

default eviction policy means that even if y(l) is the optimal page out candidate, y(l) would not be

selected for page out as it was recently referenced.

2Image-like data to be precise. The result, like images, has three channels, but the dimensionality of the third channel
might not be three.

3Although y(l) and x(l+1) refer to the same piece of data, it is referred to as layer l’s output y(l) below.

Chapter 1. Introduction 4

Instead, we propose AutoVM, which smartly chooses data to page out and when. This frees up phys-

ical global memory for data that is not being actively accessed. Paged out data are later prefetched into

global memory before being referenced in training. Integrated into TensorFlow, our method automates

the entire process of data selection for paging so that virtual memory is used more efficiently.

1.2 Contributions

This dissertation makes the following contributions:

1. We reverse engineer Nvidia’s GPU virtual memory system to reveal some of its performance char-

acteristics,

2. We design an active GPU virtual memory management policy — AutoVM, to accelerate CNN

training on memory-limited GPUs, by analyzing the computation graphs of CNNs and scheduling

tensor transfers and

3. We integrate AutoVM in TensorFlow, a widely used, industrial standard framework, and veri-

fied AutoVM is able to deliver non-trivial performance improvement comparing to using Nvidia’s

default memory management policy.

1.3 Outline of the Dissertation

The remainder of this dissertation is structured as follows. Chapter 2 provides necessary background

material on GPUs, neural networks, and TensorFlow so that the remainder of the dissertation can be

understood. Chapter 3 describes the design of AutoVM. Chapter 4 presents the results of experiments

for the purpose of understanding how Nvidia’s managed memory subsystem behaves in practice. This

was necessary because Nvidia does not provide any documentation or other information that provides

insight of this. The results of these experiments influenced our design and implementation of AutoVM.

Chapter 5 presents the implementation of AutoVM. Chapter 6 presents the results of our experiments

to evaluate AutoVM. The experiments show AutoVM is able to speed up VGG-19 training by 150.3%,

compared to using default Nvidia virtual memory subsystem. We close with concluding remarks and

possible future work in Chapter 8.

Chapter 2

Background

In this chapter, we present background information on GPUs, deep neural networks (DNNs) and Ten-

sorFlow so that the reader can better understand the remainder of this dissertation.

2.1 GPUs

GPUs are highly parallel co-processors, specialized and optimized for graphical processing workloads

that involve an extensive amount of parallelizable and in-expensive operations. GPUs have thousands

of independent but simple processing cores to process such workloads efficiently.

GPU cores are simpler than CPU cores in that they lack several architectural features that con-

tribute to the performance of CPU cores, such as large, per core caches, branch predictors and complex

instruction pipelines. Although a GPU core is weaker than a CPU core, a GPU can support a number of

cores that far exceeds the number that CPUs can support. As a result, although per-core performance

is lower, parallelizable programs can be executed much faster on a GPU if the program can exploit

the many cores available. As co-processors, GPUs have their memory hierarchies separate from the

memory hierarchy of the CPU.

GPUs are controlled by programs running on the CPU while having a distinct programming model.

Nvidia GPUs use a programming model called CUDA (Compute Unified Device Architecture), which

extends the C/C++ programming language to enable general-purpose GPU programming in a familiar

5

Chapter 2. Background 6

environment.1 However, despite CUDA being an extension of C/C++, writing high performance GPU

programs is not trivial.

In contrast to CPU architectures that tend to be backwards compatible, GPU architectures can vary

quite a bit across generations, and each generation is identified by its compute capability, a number. Hence

code optimized for one generation is usually not portable to a different generation. For example, devices

with compute capability 6.0 and higher have virtual memory support built-in, while those under 6.0 do

not. In this discussion we assume capability 7.5 of the Turing architecture [15], if not specified otherwise.

The remainder of this section will outline the details of

• GPU hardware architecture,

• software programming model,

• GPU memory hierarchy, and

• libraries for accelerated computing

The main take away is that GPUs are not trivial to program if performance is the key objective. And

it is unreasonable to expect those working on machine learning applications to optimize GPU programs

for performance, given the complexities of GPUs. Hence, those in the machine learning community rely

on libraries that hide the intricacies of GPUs from the machine learning application developers. For the

same reason, our objective in this work is to hide the complexities of memory management from the

application developers in a software layer that is mostly transparent to developers.

1Our description here is limited to Nvidia GPUs, on which this dissertation is based.

Chapter 2. Background 7

GPU silicon

Streaming
Multiprocessor

SIMD unit

Shared mem

Registers

L2
 C

ac
he

Memory controller

Global memory

DM
A

CPU

I/O

Host memory PCIe

Control

Figure 2.1: High-level GPU architecture.

2.1.1 Hardware architecture

The general architecture of a GPU is shown in Figure 2.1. CPU and GPU have separate off-chip

DRAM referred to as host memory and global memory,2 respectively. GPU also contains a shared L2

cache accessible to all processing cores. The host and the device are connected via an interconnect

such as PCI-Express or NVLink, over which GPUs’ DMA (direct memory access) engines transfer data

between host memory and global memory. Higher-end GPUs are equipped with two DMAs to support

simultaneous bi-directional transfers.

GPU cores are organized into multiple streaming multiprocessors (SMs), each containing tens to

hundreds of cores. Each SM also contains a SM-local register file and a small amount of shared memory

that is accessible only to the cores within the SM. Figure 2.2 depicts the schematics of Nvidia’s TU102

GPU from the Turing family.3

2.1.1.1 Streaming multiprocessor

As shown in Figure 2.3, a Turing SM divides the following resources into four partitions:

• 64 CUDA cores, each with one int32 unit and one float32 unit.

• 4 groups of special function units (SFUs) that handle specific maths functions,

• a 64K 32-bit register file,

• a 96KB combined shared memory/L1 cache,

• 4 instructions schedulers.

2This GPUs’ on-board memory is also referred to as the device memory. We will use the term global memory in this
dissertation.

3Turing is the newest GPU architecture, as of Aug 2019.

Chapter 2. Background 8

Figure 2.2: Schematics of the TU102 GPU. All SMs share the L2 cache located in
the center. Green blocks portray SIMD cores within SMs.

Figure 2.3: Structure of the Turing streaming multiprocessor.

These resources are local to an SM, and are not shared with other SMs in the GPU. Each SM also has

one RT core that is used for ray tracing, but this is irrelevant to this project.

Chapter 2. Background 9

Streaming Multiprocessor (SM)

CoreCore

Shared memory

Register

ŏ

Register

Global Memory

Streaming Multiprocessor (SM)

CoreCore

Shared memory

Register

ŏ

Register

Host memory

L2 Cache

Figure 2.4: CUDA memory hierarchy.

2.1.1.2 Memory hierarchy

Data accessed by GPU cores can reside in a number of different types of memory. Table 2.1 sum-

marizes the performance characteristics of the memories available on Nvidia Turing GPUs.

Local variables are typically stored in registers that offer very fast access. GPUs have many more

registers than CPUs. Nevertheless, when a thread uses too many local variables, the register contents

get spilled over into L1 and L2 caches and ultimately, global memory.

Each SM also has a fast (around 19 cycles) local scratch pad memory called shared memory. The

key challenge with this type of memory is that it is relatively small (at most 96KB per SM) and is

entirely managed by the programmer. Programmers have to decide which data resides there and when,

and explicitly copy data into and out of shared memory.

Otherwise, all data reside in global memory, which can vary in size; for instance our GPU has 11GB

of global memory while the highest-end GPU has 48GB.4 Access to global memory is significantly slower

than that of shared memory: an access to global memory typically takes over 250 cycles to complete.

GPU hardware uses three approaches to mitigate global memory access latencies. First, 32 words

can be accessed in parallel from 32 adjacent cores, if the 32 words fall onto an aligned, continuous

region. Such an access pattern is referred to as coalesced access. It is thus beneficial for the programmer

to structure a program’s data so that accesses to the data occurs in a coalesced fashion. Otherwise,

access latencies can be significantly larger — in the worst case, accesses latencies to randomly located

data will be 32 times higher than coalesced accesses.

4Quadro RTX6000 is the highest-end GPU listed for sale, as of the writing.

Chapter 2. Background 10

Performance
Size Access latency (cycles) Bandwidth (GB/s)

L1 cache 64 KB (per SM) 32 177
L2 cache 4 MB 200 2,155

Shared memory 32 or 64 KB (per SM) 19 13,800
global memory 11 GB 300 616

Table 2.1: Access latency and bandwidth of memories available on Nvidia Turing
GPUs.

Secondly, GPUs can perform context switches very quickly — i.e., typically in one cycle. As such, if a

thread issues a read to global memory, a context switch occurs immediately to allow another thread to run

while the first accesses global memory. This implies that the programmer will need to structure their code

to use many more threads as there are cores to ensure there always are ready thread blocks to schedule.

Finally, a GPU has multiple caches for faster accesses: L1 caches, (96 KB per SM) are owned privately

by each SM; a single L2 cache (4 MB), with access latency around 200 cycles, is shared between all SMs

onboard.5 The caches are managed by the hardware transparent to the applications. However, it should

be pointed out that L1 caches are typically disabled for program data on modern GPUs.6

2.1.1.3 Hardware thread execution

GPU programs are expected to be structured to execute with many thousands of threads. Once a

thread starts executing on an SM, it will remain on that SM for the duration of its life cycle; i.e., it

will never be migrated onto a different SM.

The hardware executes groups of 32 threads in lock step on adjacent GPU cores. That is, threads

[n mod 32] to [(n+ 31) mod 32] execute the same set of instructions at the same time in SIMD (single

instruction multiple data) fashion. Such a group of 32 threads is called a warp. A warp is the basic

unit of scheduling and context switching. This makes the hardware more efficient because it allows 32

cores to share a single instruction stream.

Different threads in a warp may take different branches, and if they do, it is called thread divergence.

Thread divergence causes execution to be slower because all threads in a warp share the same instruction

stream. For example, in code executing C = (cond) ? A() : B(), when some threads in a warp

5The Quoted amounts are based on Turing architecture GPUs.
6This is because L1 cache and shared memory are implemented using the same memory device. CUDA applications

typically use that entire space for shared memory, thus there is no space to support L1 caching.

Chapter 2. Background 11

execute A, the other threads are blocked and then continue to execute B when A has completed executing.

When B is being executed, the A-executing threads will be blocked.

2.1.2 Programming model

Since GPUs are CPU-controlled co-processors, all general-purpose GPU programs consist of two

parts, namely:

1. Kernels, which are CPU-invoked GPU functions running in parallel by multiple GPU threads,

2. CPU code that issues instructions to CUDA drivers to control GPU behaviour, such as kernel

launches, memory allocations and deallocations, memory copies, and synchronization.

To illustrate, a program that does matrix multiplication, C = A · B, involves the following steps,

assuming matrices A and B reside in host memory:

1. CPU instructs memory be dynamically allocated in global memory;

2. CPU initiates the data transfer of A and B from the host memory to global memory;

3. CPU launches a matrix multiply kernel on the GPU;

4. GPU executes the matrix multiplication kernel using its thousands of cores;

5. CPU initiates the transfer of result C to the host memory and the deallocation of the memory

buffer in global memory.

In the example above, only step 4 executes on the GPU. However, if step 4 takes a significant

proportion of run time and the GPU executes matrix multiply much faster than the CPU, offloading

the matrix multiply onto the GPU can boost performance considerably.

In the next sub-sections, we describe kernel launch, thread hierarchy, scheduling, and streaming.

2.1.2.1 Kernel launches

Launching a GPU kernel takes the form of an ordinary function call with additional launch parame-

ters. Unlike a regular function invocation, CUDA kernel launches always return void, and always return

immediately. That is, kernels execute asynchronously in parallel to subsequent CPU program execution.

The extra launch parameters specify how the launching kernel should be executed. The two required

parameters describe how many threads the kernel should execute with as well as how they are organized,

something referred to as the thread hierarchy.

Chapter 2. Background 12

⎡

⎢⎢⎢⎣

a1,1 a1,2 · · · a1,32
a2,1 a2,2 · · · a2,32
...

...
. . .

...
a32,1 a32,2 · · · a32,32

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a1 ,1 · · · · · · · · · a1 ,N
...

. . .
...

. . .
...

... · · ·
. . . · · ·

...
...

. . .
...

. . .
...

aN,1 · · · · · · · · · aN,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ceil(N/32) blocks

Elements
mapped to

threads

Thread block Grid

Each block handles a
32x32 subarea

Figure 2.5: Thread hierarchy mapped to a matrix addition problem.

2.1.2.2 Thread hierarchy

Threads must be logically arranged in 1D, 2D or 3D blocks by the programmer. The Nvidia archi-

tectures released so far limit the maximum number of threads in one block to 1,024.

Blocks are logically organized into 1D, 2D or 3D grids. The limit on the number of blocks in a gird

is quite high to support mapping large problems.7 Threads can locate their location within the blocks

and grids by using index values provided by the CUDA runtime. When a kernel is launched, each thread

executes the same kernel and can determine what data to process based on its position within the thread

hierarchy. Figure 2.5 depicts a possible thread hierarchy for matrix addition: every thread is assigned

to calculate one element Ai,j = Bi,j + Ci,j in the resulting matrix. Since up to 1,024 threads can be in

one block, the programmer could appoint each block to process a 32× 32 sub-matrix of A. As such, one

N ×N matrix is processed with N2 threads, arranged in a (dN/32e, dN/32e) grid of blocks.

2.1.2.3 Scheduling on GPUs

Each block is dispatched to a streaming multiprocessor that has sufficient resources available to

execute the block. Once a block is dispatched to a SM, it remains on that SM until it finishes. Blocks

will be queued when no SM has sufficient resources to support the execution. At every issue cycle, warp

schedulers in an SM select warps for execution, whose resource or data dependencies are satisfied.

2.1.2.4 Stream interface

Abstractly, streams are GPU task queues on which CPU-submitted CUDA tasks are queued. A

CUDA program can allocate multiple streams and queue tasks onto different streams.8 But the pro-

gram does not have direct control over whether tasks are executed concurrently or not. Launching
7232 − 1 blocks in the x-dimension and 65, 536 blocks in the y and z dimensions.
8The default stream is used, if no target stream is specified when making CUDA calls.

Chapter 2. Background 13

Time

Stream 0

Stream 1

Stream 2

Stream 3

Copy data in
Compute
Copy data out

Figure 2.6: Illustration of pipelining using four streams.

tasks onto different streams is a necessary but not sufficient condition for the tasks to be executed

in parallel on GPU.

Streams are mainly used to implement piplining to achieve parallel data transfer and computation.

Figure 2.6 depicts a pipeline using streams: yellow blocks represent memory copies while cyan ones

represent computations. Each stream repeatedly copies data in from the CPU, does the computation,

and copies the data out. The memory copies and computation tasks are scheduled in a fashion so

that DMA engines and processing cores are kept busy at all times. For instance at the beginning,

after stream 0 copies its data to global memory and starts its computation, stream 1 starts using the

DMA engine for copying its data (shown as the first yellow block on the second row). Ideally, after

stream 1 has finished copying, the computation of stream 0 also finishes, so that stream 1 can start its

calculation. This process is repeated such that the compute cores are continually running at full speed

as if no memory transfers have taken place.

Chapter 2. Background 14

2.1.3 Memory management

Prior to CUDA 6.0, hosts and devices could only access data that are stored in their respective

memory devices. For example, SMs could only access data stored in global memory but not in host

memory. CUDA 6.0 introduced unified memory9 that relaxed this limitation and allowed data to be

accessible from any processor in the system, regardless of the data’s storage location. However, if the

data is not in the memory of the accessing processor, it is transferred to the memory of the accessing

processor. For instance, if a GPU program accesses a piece of memory that resides in host memory, but

not in global memory, CUDA runtime will copy the data to global memory via the interconnect.

Newer GPUs starting from compute capability 6.0, with CUDA 8.0, are equipped with full virtual

memory support, with something Nvidia calls “managed memory.10” Nvidia also allows users to guide the

virtual memory system to achieve more efficient memory management. This section provides background

on GPU virtual memory system. Details on the older GPUs that do not support virtual memory are

omitted from the discussion as they are not the primary concern of this work.

2.1.3.1 Virtual memory support

GPUs with compute capability 6.0 and higher, have full paging capability and support 49-bit virtual

address translation. Memory pages11 can physically reside any host memory or global memory and be

migrated to any device (CPU or GPU) upon request. For example, SMs on a GPU can access data

stored in host memory through demand paging. Like CPU virtual memory, CUDA applications can

access a memory space that is much larger than what is physically available on the GPU, something

often referred to as memory over-subscription. In addition to the default memory management policy,

users can use advise and explicit prefetching to guide the runtime to manage GPU virtual memory better.

2.1.3.2 User control of virtual memory

As with CPU virtual memory, the keys to good memory performance include preventing page faults

and keeping data local to the accessing processor. The default memory management policy often makes

suboptimal paging decisions because it has no understanding of the running workload and relies only on

9CUDA version refers to the runtime version. Unified memory is enabled by the CUDA runtime as a software function-
ality that does not require extra hardware support.

10Unlike the unified memory, managed memory support requires extra hardware, represented by the newer compute
capability.

11The page size is variable and cannot be set by users.

Chapter 2. Background 15

Time

Evicting X

Allocating Y

Computing Y

(a)

(b)

Figure 2.7: Example of computing with and without explicit memory control. (a)
shows the case where X is not explicitly offloaded and no free physical page is avail-
able to accommodate the newly produced data. To allocate a physical page for Y ,
a page of X needs to be evicted from physical global memory. The corresponding
computation cannot start until X’s page is evicted and Y ’s page allocated. This
process is repeated for every page of Y . While in case (b), if X is explicitly trans-
ferred out, then the required physical pages of Y can be allocated quickly and Y ’s
computation can proceed non-stop. As a result, the time taken in case (b) is much
shorter than (a).

a general heuristic. Nvidia provides two runtime library functions, that allow the program to guide the

default memory management policy: cudaMemAdvise() and cudaMemPrefetchAsync().12

• cudaMemAdvise() is used to provide a hint to the virtual memory system, how and from where

target data will be accessed.

• cudaMemPrefetchAsync() prefetches data to one of the memories (host memory or global

memory) by initiating an asynchronous data migration. Prefetching can be used to improve data

locality and avoid page faults. Data transfers are asynchronous: memory transfers execute in

parallel with computations to hide the transfer latencies. In practice, this runtime library function

call can be either used to evict data from global memory or prefetch to global memory.

2.1.3.3 Benefits of user control

It is beneficial to manually control memory when the CUDA application uses more virtual memory

than the physical global memory. For example consider the scenario in Figure 2.7: suppose data X

was just produced in global memory, and will not be reused in the near future. Meanwhile, a computa-

tion kernel is producing data Y , but there is not enough memory to store both X and Y physically

in global memory.

1. If X had been previously migrated out from global memory to host memory, the physical pages

storing X in global memory can be freed to make space to store Y ’s pages physically in global

memory allowing the computations to proceed at full speed. This scenario is shown in row (b) of

Figure 2.7.
12Suboptimal invocations of advise and prefetch may negatively affect performance.

Chapter 2. Background 16

2. Otherwise, physical pages have to be evicted to host memory, (red-coloured blocks show the time

used for evicting pages) to make space for the newly generated data, a page at a time. In particular,

the GPU is performing the following steps repeatedly for every page of Y when first accessed:

• a page fault occurs since it does not in global memory,

• a victim page for eviction to host memory, needs to be selected because no free physical page

is available,

• the data stored in that page is transferred to host memory,

• the evicted physical page is deallocated, and allocated a page for Y , and

• the computation continues.

Every step blocks the next; as a result, the performance is considerably worse compared to the

first case where no eviction is needed during the production of Y .

Although X would be the best candidate for eviction since it will not be accessed in the near

future, it is unlikely to be selected for eviction by the default memory management policy, as it was

recently referenced. Hence, manually controlling memory by issuing an eviction request for X will

benefit performance when the global memory is over-subscribed.

2.1.4 GPU performance issues

GPUs are not trivial to program if good performance is the objective, because of the complex

architectures of GPUs. In particular, some of the following issues need to be taken into account:

Coalesced memory access Global memory accesses need to be coalesced to attain high memory

throughput. That is, threads in a warp need to access memory addresses that fall into aligned and

continuous 32, 64 or 128 bytes regions.

Thread divergence Although the thread execution model allows the threads in a warp to take different

branches, divergent threads can negatively impact performance by up to a factor of 2.

Shared memory Programs often use shared memory as scratch pads, and the shared memory is man-

aged by the programmer. The shared memory needs to be used wisely as it is limited in size.

Furthermore, access latencies of shared memory will be suboptimal if threads in one warp access

different addresses within the same shared memory bank. Such behaviour is called shared memory

bank conflict and should be avoided.

Occupancy Occupancy measures the level of resource usage in SMs. As explained in §2.1.1.2, global

memory access latencies of a warp can be hidden by executing other warps’ computations. It is

Chapter 2. Background 17

thus often beneficial to use many threads so that when some access memory, there are other threads

to schedule to hide global memory access latency. However, the more resource (registers or shared

memory) a thread uses, the fewer threads can reside in a SM. This means the programmer has

to be using the resources wisely so that there are enough threads in a SM to hide global memory

access latencies.

The bottom line: a systematic understanding of the underlying GPU architecture is crucial for

writing high-performance GPU programs. As a result, libraries that hide the system’s intricacies are

typically preferred. Machine learning engineers are typically not system experts, and hence they cannot

be expected to write well-performing CUDA applications. As such, they rely on libraries that were

written by system experts.

2.1.5 Accelerated libraries

Nvidia has released accelerated libraries that contain highly optimized functions useful in a variety of

domains including signal processing, scientific computing and deep learning. These library functions do

not require the machine learning engineers to launch CUDA kernels (that requires the additional launch

parameters) but instead offer wrapper functions that invoke appropriate kernels. In fact, every library

function is backed by multiple implementations that are optimized for specific configurations and the

appropriate implementation is invoked. For example, the function for matrix multiplication has multiple

implementations, optimized for different matrix shape configurations. On invocation, the library runtime

applies heuristics to determine the implementation that best suit the matrix shape configuration.

2.2 Deep neural network

Neural networks, inspired by brain neurology, are a subset of machine learning algorithms that can

“learn” from examples and perform specific tasks on new data. For example, a classifier can learn to

categorize architectural styles of houses by analyzing example images that have been manually labelled;

e.g., Russian, gothic or baroque. The classifier learns the traits specific to each of the architectural styles

without requiring any prior knowledge of architecture or manual instructions.

Neural networks are built by arranging layers in specific orders. A “layer” is an abstraction of

a math operation that transforms its input in a specific way. Each layer uses weights13 to affect the

13A few types of layer do not use weights.

Chapter 2. Background 18

Symbol Usage Symbol Usage
x Input k Current output channel
y Output K Total output channels
w Weight p Current output height position

d or ∂ Derivative/Gradient q Current output width position
f (l) Layer l’s math function L Loss function
α Learning rate x Gradient ∂L/∂x
N Batch size i, j Indices
H Input image height l Layer number
W Input image width Θ Set of all trainable weights
C Total input channels Bold type N-dimensional array (or tensor)

Table 2.2: Mathematical symbols used in the dissertation.

transformation. Inputs and outputs of neural networks are also task-specific. For example, an image

classifier takes in images and outputs the classes of objects in the images that were input. Specifically,

the house style classifier outputs (for each image input) a 3-element vector, with each element equal to

the predicted probability that the input image contains Russian, gothic or baroque architecture.

A neural network has to be trained before it can be used for inference. Inference is the process

where inputs propagate through the layers to produce the network output. Training refers to the

process in which the network corrects its weights by taking into account mistakes it has made during

the previous inferences.

Deep neural networks (DNNs) refer to neural networks that have many layers. Our work focuses on

convolutional neural networks (CNNs), a subset of DNNs, that have been widely applied in analyses

of visual imagery.

In this section, we describe the mechanics and workload of CNNs. Specifically, the following sub-

sections provide details on

• types of layers used in CNN and their performance characteristics,

• the inference and training process, and

• data flow in CNN training.

Table 2.2 summarizes the symbols used in our formulas14 in the text that follows.

14In the dissertation, bias terms are often omitted for simplicity, we assume that the data and weight tensors are
augmented to include the effect of bias terms.

Chapter 2. Background 19

C
O

N
V

1

AC
TV

PO
O

L
1

C
O

N
V

2

AC
TV

PO
O

L
2

C
O

N
V

3

AC
TV

C
O

N
V

4

AC
TV

C
O

N
V

5

AC
TV

PO
O

L
5

FC
 1

FC
 2

O
ut

pu
t

Input

AC
TV

AC
TV

Figure 2.8: Layer structure of AlexNet. The colours in the figure represent the
estimated run times of layers: red:long, yellow:medium, green:short.

x1
<latexit sha1_base64="MWSDWkw1NdOauHNwPQkLknLX4o4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEM/o2k</latexit>

x2
<latexit sha1_base64="vdTCQWpAcdEoAqjXndSIH2U27gw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMOgo2l</latexit>

x3
<latexit sha1_base64="GcfdmiVXIuQAVIE+3vSRqlRiStc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStmrlit3F6XadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAaNpg==</latexit>

x4
<latexit sha1_base64="jWBmQGVqa48YZ6/3PC5ZWIyPers=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/qlX7RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfuqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEYqNpw==</latexit>

x5
<latexit sha1_base64="kqxXQf8R+MEijt2vTMYXcAGGEVc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswODUyYnd3MzBrJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3H1FpHskHM47RD+lA8j5n1Fjp/ql70S2W3LI7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/5KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNStk7K1fuzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4AEw6NqA==</latexit>

w11
<latexit sha1_base64="qlhRuRJFmIEKP2yx5MZhTZl0hAU=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Kpsq6LHoxWMF+wHtUrJpto3NJkuSVcrS/+DFgyJe/T/e/Dem7R609cHA470ZZuaFieDG+v63t7K6tr6xWdgqbu/s7u2XDg6bRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoZuq3Hpk2XMl7O05YEJOB5BGnxDqp+dTLMJ70SmW/4s+AlgnOSRly1Hulr25f0TRm0lJBjOlgP7FBRrTlVLBJsZsalhA6IgPWcVSSmJkgm107QadO6aNIaVfSopn6eyIjsTHjOHSdMbFDs+hNxf+8TmqjqyDjMkktk3S+KEoFsgpNX0d9rhm1YuwIoZq7WxEdEk2odQEVXQh48eVl0qxW8HmlendRrl3ncRTgGE7gDDBcQg1uoQ4NoPAAz/AKb57yXrx372PeuuLlM0fwB97nD0D+juo=</latexit>

w21
<latexit sha1_base64="F16Z/jg9PLdycfov8Xiw4K48RnY=">AAAB7XicbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHoxWMF+wHtUrJpto3NJkuSVcrS/+DFgyJe/T/e/Dem7R609cHA470ZZuaFieDGet43WlldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7JIYJLlnDcitYO9GMxKFgrXB0M/Vbj0wbruS9HScsiMlA8ohTYp3UfOplVX/SK5W9ijcDXiZ+TsqQo94rfXX7iqYxk5YKYkzH9xIbZERbTgWbFLupYQmhIzJgHUcliZkJstm1E3zqlD6OlHYlLZ6pvycyEhszjkPXGRM7NIveVPzP66Q2ugoyLpPUMknni6JUYKvw9HXc55pRK8aOEKq5uxXTIdGEWhdQ0YXgL768TJrVin9eqd5dlGvXeRwFOIYTOAMfLqEGt1CHBlB4gGd4hTek0At6Rx/z1hWUzxzBH6DPH0KEjus=</latexit>

w31
<latexit sha1_base64="GuAoYyTn/7WhtUVCvNtLUc5Bk+0=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ltBT0WvXisYD+gXUo2zbax2WRJskpZ+h+8eFDEq//Hm//GdLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeY3Mz9ziNVmklxb6Yx9SM8EixkBBsrtZ8Gad2bDcoVt+pmQKvEy0kFcjQH5a/+UJIkosIQjrXueW5s/BQrwwins1I/0TTGZIJHtGepwBHVfppdO0NnVhmiUCpbwqBM/T2R4kjraRTYzgibsV725uJ/Xi8x4ZWfMhEnhgqyWBQmHBmJ5q+jIVOUGD61BBPF7K2IjLHCxNiASjYEb/nlVdKuVb16tXZ3UWlc53EU4QRO4Rw8uIQG3EITWkDgAZ7hFd4c6bw4787HorXg5DPH8AfO5w9ECo7s</latexit>

w41
<latexit sha1_base64="GQr5gLq6Fq+/FP7jrrRjP3EQDxQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mtBT0WvXisYD+gXUo2zbax2WRJskpZ+h+8eFDEq//Hm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tEEdoikkvVDbCmnAnaMsxw2o0VxVHAaSeY3GR+55EqzaS4N9OY+hEeCRYygo2V2k+DtO7NBuWKW3XnQKvEy0kFcjQH5a/+UJIkosIQjrXueW5s/BQrwwins1I/0TTGZIJHtGepwBHVfjq/dobOrDJEoVS2hEFz9fdEiiOtp1FgOyNsxnrZy8T/vF5iwis/ZSJODBVksShMODISZa+jIVOUGD61BBPF7K2IjLHCxNiASjYEb/nlVdKuVb2Lau2uXmlc53EU4QRO4Rw8uIQG3EITWkDgAZ7hFd4c6bw4787HorXg5DPH8AfO5w9FkI7t</latexit>

w51
<latexit sha1_base64="YAVtixXB5afZFSpsTB8Ae21F+5w=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiieyiRo9ELx4xkYUENqRbulDptpu2qyEb/oMXDxrj1f/jzX9jgT0o+JJJXt6bycy8MOFMG9f9dgorq2vrG8XN0tb2zu5eef/A1zJVhDaJ5FK1Q6wpZ4I2DTOcthNFcRxy2gpHN1O/9UiVZlLcm3FCgxgPBIsYwcZK/lMvu/AmvXLFrbozoGXi5aQCORq98le3L0kaU2EIx1p3PDcxQYaVYYTTSambappgMsID2rFU4JjqIJtdO0EnVumjSCpbwqCZ+nsiw7HW4zi0nTE2Q73oTcX/vE5qoqsgYyJJDRVkvihKOTISTV9HfaYoMXxsCSaK2VsRGWKFibEBlWwI3uLLy8SvVb2zau3uvFK/zuMowhEcwyl4cAl1uIUGNIHAAzzDK7w50nlx3p2PeWvByWcO4Q+czx9HFo7u</latexit>

w52
<latexit sha1_base64="7FzjLTAwZzzJQGgFf+eL+jN/HKk=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiieyiRo9ELx4xkYUENqRbulDptpu2qyEb/oMXDxrj1f/jzX9jgT0o+JJJXt6bycy8MOFMG9f9dgorq2vrG8XN0tb2zu5eef/A1zJVhDaJ5FK1Q6wpZ4I2DTOcthNFcRxy2gpHN1O/9UiVZlLcm3FCgxgPBIsYwcZK/lMvu6hNeuWKW3VnQMvEy0kFcjR65a9uX5I0psIQjrXueG5iggwrwwink1I31TTBZIQHtGOpwDHVQTa7doJOrNJHkVS2hEEz9fdEhmOtx3FoO2NshnrRm4r/eZ3URFdBxkSSGirIfFGUcmQkmr6O+kxRYvjYEkwUs7ciMsQKE2MDKtkQvMWXl4lfq3pn1drdeaV+ncdRhCM4hlPw4BLqcAsNaAKBB3iGV3hzpPPivDsf89aCk88cwh84nz9Im47v</latexit>

w53
<latexit sha1_base64="HjmrqAREy/FEuroS/62QhEGEuew=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewCRo9ELx4xkY8ENqRbulDptpu2qyEb/oMXDxrj1f/jzX9jgT0o+JJJXt6bycy8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Mb2Z++5EqzaS4N5OY+hEeChYygo2VWk/99KI67RdLbtmdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtStmrlit3tVL9OosjDydwCufgwSXU4RYa0AQCD/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8ASiCO8A==</latexit>

x 2 R5⇥1
<latexit sha1_base64="TAiyrG+sby6LoYSwH+QAn5u4usc=">AAACDHicbVC7TsMwFHV4lvIqMLJYVEhMVVJAMFawMBZEH1JTKsd1WquOE9k3iCrKB7DwKywMIMTKB7DxNzhtBmg5kqXjc+7Vvfd4keAabPvbWlhcWl5ZLawV1zc2t7ZLO7tNHcaKsgYNRajaHtFMcMkawEGwdqQYCTzBWt7oMvNb90xpHspbGEesG5CB5D6nBIzUK5XdgMDQ85OH1OVy+vGSm/QuOXWBB0xjJzVVdsWeAM8TJydllKPeK325/ZDGAZNABdG649gRdBOigFPB0qIbaxYROiID1jFUEjOnm0yOSfGhUfrYD5V5EvBE/d2RkEDrceCZymxbPetl4n9eJwb/vJtwGcXAJJ0O8mOBIcRZMrjPFaMgxoYQqrjZFdMhUYSCya9oQnBmT54nzWrFOa5Ur0/KtYs8jgLaRwfoCDnoDNXQFaqjBqLoET2jV/RmPVkv1rv1MS1dsPKePfQH1ucPkW6b7A==</latexit>

w 2 R5⇥3
<latexit sha1_base64="Arrusjzcp8wVl36/9pIJbKSfzlQ=">AAACDHicbVC7TsMwFL0pr1JeBUYWiwqJqUpaEIwVLIwF0YfUlMpxndaq40S2A6qifAALv8LCAEKsfAAbf4PTdoCWI1k6Pude3XuPF3GmtG1/W7ml5ZXVtfx6YWNza3unuLvXVGEsCW2QkIey7WFFORO0oZnmtB1JigOP05Y3usz81j2VioXiVo8j2g3wQDCfEayN1CuW3ADroecnD6nLxPTjJTfpXXLqahZQhaqpqbLL9gRokTgzUoIZ6r3il9sPSRxQoQnHSnUcO9LdBEvNCKdpwY0VjTAZ4QHtGCqwmdNNJsek6MgofeSH0jyh0UT93ZHgQKlx4JnKbFs172Xif14n1v55N2EiijUVZDrIjznSIcqSQX0mKdF8bAgmkpldERliiYk2+RVMCM78yYukWSk71XLl+qRUu5jFkYcDOIRjcOAManAFdWgAgUd4hld4s56sF+vd+piW5qxZzz78gfX5A5Lam+0=</latexit>

y = w>x 2 R3⇥1
<latexit sha1_base64="Ik0ts9WjIsfeyVNFipVzfrTP8+k=">AAACKHicbVBLS8NAEN74tr6iHr0sFsFTSVpBL6LoxWMV+4CmLZvtpl262YTdiVpCfo4X/4oXEUV69Ze4fYGvgYHv+2aGmfn8WHANjjO05uYXFpeWV1Zza+sbm1v29k5VR4mirEIjEam6TzQTXLIKcBCsHitGQl+wmt+/HNVrd0xpHslbGMSsGZKu5AGnBIzUts+8kEDPD9JBhk/xjNxnLQ+ieEYfMo/LCfHTm6yVljzgIdPYzdp23ik448B/gTsFeTSNctt+9ToRTUImgQqidcN1YmimRAGngmU5L9EsJrRPuqxhoCRmTzMdP5rhA6N0cBApkxLwWP0+kZJQ60Hom87Rtfp3bST+V2skEJw0Uy7jBJikk0VBIjBEeOQa7nDFKIiBAYQqbm7FtEcUoWC8zRkT3N8v/wXVYsEtFYrXR/nzi6kdK2gP7aND5KJjdI6uUBlVEEWP6Bm9oXfryXqxPqzhpHXOms7soh9hfX4BbweoCA==</latexit>

y1
<latexit sha1_base64="gXLzr9lA6QyErQrPkt90wKdvXMk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9b3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6C/oRqFEzyaamXGp5QNqZD3rVU0YgbfzI/dUrOrDIgYaxtKSRz9ffEhEbGZFFgOyOKI7PszcT/vG6K4bU/ESpJkSu2WBSmkmBMZn+TgdCcocwsoUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEOhI2l</latexit>

y2
<latexit sha1_base64="UmY8miGJFsYtImgQ4UOSFc3rPPg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0Io/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xCzhfkSHSoSCUbTSQ9av9csVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/QnVKJjk01IvNTyhbEyHvGupohE3/mR+6pScWWVAwljbUkjm6u+JCY2MyaLAdkYUR2bZm4n/ed0Uw2t/IlSSIldssShMJcGYzP4mA6E5Q5lZQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru/rNRv8jiKcAKncA4eXEEd7qABTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QMQCI2m</latexit>

y3
<latexit sha1_base64="I1Yqf/dyfMgBYEmmGxGuyvCmwQ4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+0m/3i9X3Ko7B1klXk4qkKPZL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6Rdq3r1au3uotK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8RjI2n</latexit>

Figure 2.9: Illustration of a linear layer that takes five input and outputs three
weighted results.

2.2.1 Layers in neural networks

A layer abstracts a mathematical operation performed on its inputs; its output is passed to sub-

sequent layers as inputs, for further processing. Figure 2.8 depicts a typical CNN with four types of

layers that are used in CNNs. The following subsections describes these layer types, as well as their

performance characteristics.

2.2.1.1 Fully connected layers

A fully connected (FC), or linear layer, takes an input and applies a weight function to produce an

output. Figure 2.9 illustrates a fully connected layer that takes five inputs and produces three outputs

(some edges are omitted for cleanliness). In the example, the layer’s input is a 5×1 vector [x1, . . . , x5]>,

which is weighted by a 5× 3 weight matrix
(w11

. . .
w53

)
, and the output is a 3× 1 vector [y1, y2, y3]>.

Generally, a fully connected layer that takes in a n-element vector and outputs a m-element vector y,

uses a m × n weight matrix w. The math operation, written in its matrix form, is

y = w> · x

Chapter 2. Background 20

Figure 2.10: Example filters learned by the first convolution layer in Alexnet [13].
Each of the 96 filters is sized 11×11×3. Note that some filters focus on discovering
lines and some extract shape and colour information.

In practice, multiple inputs are stacked together to form a matrix, hence, the computation of a fully

connected layer is a matrix multiplication, an operation that can be parallelized in a straight forward

way. Matrix multiplication has a time complexity of O(n3).

2.2.1.2 Convolution layer

Convolution layers are used to extract local features, like lines in a particular direction or a blotch of

some colour, by convolving the input with its weights (also called filters). Input images to a convolution

layer are typically represented by three-dimensional arrays, where the first two dimensions are the width

and height, and the third dimension if often referred to as channel. Colour images typically contain

three channels, namely red, green and blue. The value at any given point (p, q) of channel k, in the

convolution result, is defined as

yp,q,k =
C∑

c=1

a∑
s=−a

b∑
t=−b

ws,t,k · xp−s,q−t,c

where x is the image input, w is the 3D filter that is spatially sized as 2a × 2b × K, and y is the

convolution result, also called the feature map. The parameter c in the formula refers to channel in

the input image.

The workload of a convolution computation is demanding on both compute and memory resources.

Many parallel algorithms, including implicit GEMM, Winograd method [24] and FFT, have been devel-

oped to accelerate convolution computations. Implicit GEMM, for example, reorders the image inputs

and filters in a way such that the convolution can be computed with matrix multiplications. Some paral-

lel algorithms, like FFT, have large memory requirements that can be in the gigabyte range. Convolution

Chapter 2. Background 21

Figure 2.11: Feature maps produced by later convolution layers. Yosinski et al. [26].

results (i.e., feature maps) can also consume a significant amount of memory. For example, in network

VGG-16 [19], the size of all feature maps generated from one 224 × 224 × 3 image is around 100MB,

while all weights in the network consume only about 50MB. It is for this reason we target feature maps

when optimizing the memory management.

2.2.1.3 Activation layer

Activation layers apply a non-linear transformation to their inputs without using weights. Non-linear

activation is crucial to CNNs, as according to universal approximation theorem [8], non-linear neural

networks can approximate any function. Without activation, neural networks can only represent linear

systems. Activation is applied to every element in the input, that is

y = σ(x)

where x is the input, σ(·) is an element-wise non-linear function and y is the output. In many CNNs,

ReLU(x) = max(0, x) is used as the activation function because both the function and the function

gradient are relatively inexpensive to compute compared to other activation functions like tanh().

The computation of ReLU activation is trivial and embarrassingly parallelizable. Furthermore,

since the output shape is the same as that of the input, activation can be implemented as an in-place

operation to save space.

2.2.1.4 Pooling layer

Pooling is used to progressively reduce the size of the feature maps generated by convolution, and in

turn reduces the number of weights needed in the network. The most commonly used configuration is

max pooling with a filter size of 2×2 and a stride of 2. This means that the input is partitioned into 2×2

sub-matrices, and for every sub-matrix, only the largest element is kept. As illustrated in Figure 2.12,

Chapter 2. Background 22

1 1

2 4 4 8

7 9

5 6

8 3

5 2

0 7

6 1

9 3

Stride = 2

Fi
lte

r s
ize

 =
 2

Figure 2.12: Illustration of pooling with filter size 2 and stride 2.

pooling under this configuration effectively removes 75% of the input data. The computation required

for pooling is trivial and easily parallelizable.

2.2.1.5 CNN structure

Convolutional neural networks contain chains of layers arranged in specific sequences. For example,

AlexNet [13] chains five instances of convolutional segments with three fully connected layers, as illus-

trated in Figure 2.8 (on page 19). A network, in which layer l’s output is only taken as input by layer

l + 1, is called a linear network. In non-linear networks, however, layer l’s output is used by multiple

other layers. Our work focuses on linear CNNs.

2.2.2 Inference and Training

Neural networks have to be trained before they can be used for inference. Below we describe how

both inference and training work.

2.2.2.1 Inference

Inference, also known as forward propagation, refers to the process of propagating the network input

through the layers. The input is transformed by each layer from the first to the last, where the inference

output is produced. The inference process can be abstracted as compounding the layers’ corresponding

mathematical functions:

inference result = F (input,Θ) = f (l) ◦ f (l−1) ◦ · · · ◦ f (2) ◦ f (1)(input,Θ)

where f (l) represents the math function of layer l, and Θ is the set of all trainable weights,

Θ =
{
w(i)| ∀ i = 1 . . . l

}
.

Chapter 2. Background 23

2.2.2.2 Training

Training calibrates the network weights using the inference result. During training, labelled data is

fed into the network for inference. The inference result is then compared against the known correct values

by a loss function L, which outputs a numerical loss value that measures “how accurate” the inference

results are. For example, if the house style classifier correctly identified the style, then the loss will be

small; whereas if it categorized Russian design to be baroque, the loss would be larger to reflect the error.

loss = L(inference result,data labels)

= L [F (input,Θ) ,data labels]

The training objective is to minimize the loss of a neural network by appropriately adjusting the

network weights. Ideally, the trained weight is the one, among all possible weights, that leads to the

least loss value:

Θopt = argmin
Θ∈R

L [F (input,Θ) ,data labels]

Thus, loss functions quantify the network accuracy and turn training into a numerical optimization

process.

2.2.3 Gradient descent

Although it is unclear whether a neural network’s loss function is convex; convex optimization

techniques have been successfully applied to minimize the loss. Gradient descent is an optimizing

technique for finding minima in convex problems and is widely used in neural network training.

The algorithm employs the fact that the global minima of a convex function can be approached

iteratively by moving along the function’s curve, in the negative direction of its gradient. The gradient

of a function at a point indicates the direction of the fastest descent along the function at that point.

Consider the quadratic function L(w) depicted in Figure 2.13, and assume weight w is initially set

to −2. Intuitively, w’s value needs to be increased to reach L’s minima. The gradient of L, at −2 is

−6, denoted by the slope of the thick red line. The value of w should be increased to be closer to L’s

minima. A common approach is to adjust the value of w by L’s gradient scaled with −α. If α = 1/6,

Chapter 2. Background 24

−3 −2 −1 0 1 2 3
5

10

15

20

25

. . .

w

L
(w

)

L(w)
dL/dw|−2
dL/dw|−1

Figure 2.13: Applying gradient descent to a quadratic function (convex). The
amount moved is α · dL/dw.

then the value of w is increased by 1 to −1 in the first iteration. The process is then repeated until the

L(w) converges to its minima, as depicted by the black dots.15

The update in every iteration, written formally, is:

wnew ← wold − α ·
dL
dw

∣∣∣
wold

(2.1)

where α is called the learning rate, a hyper-parameter that is manually set before training and

will not be tuned by the gradient descent process. Finding optimal α’s remains as an active research

topic [28] [27]. Some optimization technique, like ADAM [12] that extends gradient descent, adjusts

the learning rate during the iterative descent process.

Equation (2.1) adjusts only one weight. In practice, weights have more elements and every element

is updated based on the partial derivative of the loss function with regard to itself:

wi ← wi − α ·
∂L
∂wi

, ∀wi ∈ Θ (2.2)

15In practice, the training process is stopped when the loss converges to a small value.

Chapter 2. Background 25

FC ACTy(l�1) = x(l)
<latexit sha1_base64="hhNIf3nBG74nJzfk0lYZU9SEir4=">AAACTnicbZDNShxBFIWrRxPHzt8Yl24KB8EsHLoni7gJCNlkaSCjwnRnqK6+rYX101RVxzRF7fIGeZpsFVxnqw+QJxB3ktTMuMhoDhQcvnsv99Ypas6MTZKrqLO0/OTpSnc1fvb8xctXvbXXB0Y1msKIKq70UUEMcCZhZJnlcFRrIKLgcFicfpjWD7+CNkzJz7atIRfkWLKKUWIDmvR2Mk5a0LIRheKla73jO6nH7/Ei/xa4j+NJr58MkpnwY5Pem/7e+tb3m8vf1/uTtWg1KxVtBEhLOTFmnCa1zR3RllEOPs4aAzWhp+QYxsFKIsDkbvYvj7cCKXGldHjS4hn9d8IRYUwritApiD0xD2tT+L/auLHVbu6YrBsLks4XVQ3HVuFpSLhkGqjlbTCEahZuxfSEaEJtiDLOJJxRJQSRpVuIyY+HuYtxUDbdWVSun/ovbrs/fONjH8JLH0b12BwMB+nbwfBTSHEXzdVFG2gTbaMUvUN76CPaRyNE0Q/0E52ji+hXdBvdRX/mrZ3ofmYdLajT/QtVALcK</latexit>

w(l)
<latexit sha1_base64="ZxelZ4T92xC6i0aOzsF6Ubsqw08=">AAACNnicbZDPTttAEMbXFFpwoU2KOHFZYVWCS2SnSOUYqReOIJEEKTbRej1OVuwfa3cNilZ+mF7bF+BVeukNce0jdBNygIRPGunTNzOa0S+vODM2jv8EG+82t95/2N4JP+7uffrcan8ZGFVrCn2quNLXOTHAmYS+ZZbDdaWBiJzDML/9Me8P70AbpuSVnVWQCTKRrGSUWB+NWwcpJzPQsha54oW7bxxvwnDciuJOvBBeN8nSRGipi3E72EkLRWsB0lJOjBklcWUzR7RllEMTprWBitBbMoGRt5IIMJlb/N/grz4pcKm0L2nxIn254YgwZiZyPymInZrV3jx8qzeqbXmWOSar2oKkz4fKmmOr8BwGLpgGavnMG0I1879iOiWaUOuRhamEe6qEILJwrzA1o27mQuyVzm/mpYuS5sYdR92TJmw8vGQV1boZdDvJt0738jTqnS0xbqNDdISOUYK+ox46Rxeojyhy6Cf6hX4HD8Hf4DF4eh7dCJY7++iVgn//AeCeqYw=</latexit>

z(l)
<latexit sha1_base64="7cSOdoJvgmYxG8+0L/frEMueOQk=">AAACNnicbZDPTttAEMbXUNrg0jYBceKyqlWJXiI7RSpHpF44UokkSLEbrdfjZMX+sXbXoLDyw/TavgCvwoVbxZVHYPPnQKCfNNKnb2Y0o19ecWZsHN8FG5tvtt6+a22H73c+fPzU7uwOjKo1hT5VXOmLnBjgTELfMsvhotJARM5hmF/+mPeHV6ANU/LczirIBJlIVjJKrI/G7f2UkxloWYtc8cLdNI43YThuR3E3Xgi/NsnKRGils3En2E4LRWsB0lJOjBklcWUzR7RllEMTprWBitBLMoGRt5IIMJlb/N/gLz4pcKm0L2nxIn2+4YgwZiZyPymInZqXvXn4v96otuVx5pisaguSLg+VNcdW4TkMXDAN1PKZN4Rq5n/FdEo0odYjC1MJ11QJQWTh1jA1o17mQuyVzm/mpYuS5pc7jHpfm7Dx8JKXqF6bQa+bfOv2fh5FJ8crjC10gD6jQ5Sg7+gEnaIz1EcUOfQb/UF/g9vgPvgXPCxHN4LVzh5aU/D4BOXkqY8=</latexit>

y(l)
<latexit sha1_base64="Us+vEVhQZo3Wf661iSylGod3AXU=">AAACNnicbZDLattAFIZH6c1Wb05DV90MFQV3YySnkCwD2XTpQH0BSzWj0ZE9eC5iZpQiBj1Mt80L9FWyya5020fo+LJo4v5w4Oc/53AOX15xZmwc3wZHjx4/efqs0w2fv3j56nXv+M3EqFpTGFPFlZ7lxABnEsaWWQ6zSgMROYdpvr7c9KfXoA1T8ottKsgEWUpWMkqsjxa9tyknDWhZi1zxwjWt420YLnpRPIi3wocm2ZsI7TVaHAfdtFC0FiAt5cSYeRJXNnNEW0Y5tGFaG6gIXZMlzL2VRIDJ3Pb/Fn/wSYFLpX1Ji7fpvxuOCGMakftJQezKPOxtwv/15rUtzzPHZFVbkHR3qKw5tgpvYOCCaaCWN94Qqpn/FdMV0YRajyxMJXyjSggiC3cPUzsfZi7EXunmZl66KGm/un40/NiGrYeXPER1aCbDQXI6GF59ii7O9xg76B16j/ooQWfoAn1GIzRGFDn0Hf1AN8HP4C74FfzejR4F+50TdE/Bn7/kIqmO</latexit> ERR

�
<latexit sha1_base64="o1/+NZSv0IJob43+oZoF0ppIH6I=">AAACJnicbVBNS+RAEO3o7jpmP3T0uJdmw4J7GZJR0KPgxaOC4wiTrFQ6lbGZ/gjdHWUI+RFe9Q/4a7yJePOnbM84Bz/2QcHjvSqq6uWV4NbF8VOwtPzp85eVzmr49dv3H2vr3Y1Tq2vDcMC00OYsB4uCKxw47gSeVQZB5gKH+eRg5g8v0Viu1YmbVphJGCtecgbOS8PU8rGE8Hw9invxHPQjSRYkIgscnXeD1bTQrJaoHBNg7SiJK5c1YBxnAtswrS1WwCYwxpGnCiTarJnf29LfXiloqY0v5ehcfT3RgLR2KnPfKcFd2PfeTPyfN6pduZc1XFW1Q8VeFpW1oE7T2fO04AaZE1NPgBnub6XsAgww5yMKU4VXTEsJqmhSAVM0qpa5FkU76mdNSD3S2c68bKKk/dtsRf0/bdj68JL3UX0kp/1est3rH+9E+3uLGDvkJ/lFtkhCdsk+OSRHZEAYmZBrckNug7vgPngIHl9al4LFzCZ5g+D5H+G/ovU=</latexit> L

<latexit sha1_base64="/SNRuGu22TVGUMK8eVDRKU7RTEo=">AAACKnicbZDPSt1AFMYnttVrtFbbZTdDg6CbS3IV6lJw00UXt9CrQpLKyeREB+dPmJkolyGP4da+QJ+mO+m2D9LJ9S5a7QcDH985h/n4Va3g1qXpQ7Ty4uWr1bXReryx+XrrzfbO21OrO8NwxrTQ5rwCi4IrnDnuBJ63BkFWAs+q65NhfnaDxnKtvrp5i6WES8UbzsCFKC8kuCsGwn/uL7aTdJwuRJ+bbGkSstT0YidaL2rNOonKMQHW5lnautKDcZwJ7OOis9gCu4ZLzINVINGWftG5p7shqWmjTXjK0UX694UHae1cVmFz6Gifzobwf7O8c81R6blqO4eKPX7UdII6TQcAtOYGmRPzYIAZHrpSdgUGmAuY4kLhLdNSgqp9IWCORnWy0qLu80npYxq0YFY1Psn6b34vmez38QAve4rquTmdjLOD8eTLYXJ8tMQ4Iu/JB7JHMvKRHJNPZEpmhBFN7sg9+R79iH5GD9Gvx9WVaHnzjvyj6PcfAXmlIA==</latexit>

t
<latexit sha1_base64="OZj9jD2uK9hetiPHW2bYYf8mOn0=">AAACKXicbVDLSsQwFE19jvWtSzfBIuhmaEdBl4IblyM4Kk6rpOmtBvMoSaoMpX/hVn/Ar3Gnbv0R03EEXwcCh3Pu5Z6ctODM2DB89cbGJyanplsz/uzc/MLi0vLKiVGlptCjiit9lhIDnEnoWWY5nBUaiEg5nKY3B41/egvaMCWP7aCARJAryXJGiXXSeSyIvU7zytaXS0HYDofAf0k0IgEaoXu57M3EmaKlAGkpJ8b0o7CwSUW0ZZRD7celgYLQG3IFfUclEWCSahi5xhtOyXCutHvS4qH6faMiwpiBSN1kE9H89hrxP69f2nwvqZgsSguSfh7KS46tws3/ccY0UMsHjhCqmcuK6TXRhFrXkh9LuKNKCCKzKuZkAFqWIlU8q/udpPKxw1dlQVRfVJtBZ6v2m/Ki31X9JSeddrTd7hztBPt7oxpbaA2to00UoV20jw5RF/UQRRLdowf06D15z96L9/Y5OuaNdlbRD3jvH2lhpNY=</latexit>

Figure 2.14: Example dataflow of the last two layers of a CNN: a fully connected
and an activation layer. z(l) = (x(l))> · w(l),y(l) = σ(z(l)). L represents the loss
function that measures the activation result y(l) against known data label t.

2.2.3.1 Gradient calculation

Training adjusts all the weights in the network to minimize the loss, improving inference perfor-

mance. As mentioned in §2.2.2.1, inference can be abstracted as compounding layers’ corresponding

math functions, allowing us to apply the chain rule to find the gradient of each weight element.16

The rules for gradient calculation is illustrated using a simple example below; we will also generalize

the rules in the next subsection. Figure 2.14 (on page 25) shows the last two layers of a CNN, consisting

of a fully connected layer and an activation layer. The fully connected layer takes in x(l), and outputs

z(l) = w(l)x(l). The activation layer then applies the non-linear function σ to its input, z(l); its output

y(l) is then assessed by a square loss function L = 1
2
∑N

i=1(ti − yi)2, a typical error function used

in regression tasks.17

In the deduction that follows, a is used to denote the gradient of L with regarding to a, i.e.,

a = {∂L/∂ai | ∀ai ∈ a}. t is the vector of known values of data labels. ‖a‖2
2 denotes the square of a’s

Euclidean norm, ‖a‖2
2 =

(√∑
i a

2
i

)2
=
∑

i a
2
i ,∀ai ∈ a.

To summarize, the dataflow in Figure 2.14 is:

z(l) = (x(l))> ·w(l);

y(l) = σ(z(l))

L = 1
2

N∑
i=1

(ti − y(l)
i)2 = 1

2‖t− y(l)‖2
2

16Chain rule is used for finding derivatives of compound functions. Specifically, d
dx

f ◦ g(x) = df
dg

dg
dx

. In multi-variable
functions, the chain rule is applied to each constituent function. For example, d

dt
h(f(x), g(x)) = ∂h

∂f
df
dx

+ ∂h
∂g

dg
dx

.
17The fraction in front cancels out when taking the gradient of the loss function.

Chapter 2. Background 26

The goal of gradient descent is to find the gradient of L with regard to weight w(l). Specifically,

the chain rule gives us

∂L
∂w(l) = ∂L

∂y(l) ·
∂y(l)

∂z(l) ·
∂z(l)

∂w(l)

The calculation of weight gradient ∂L
∂w(l) can be split into the following steps. For better readability,

we colour the steps following the derivation steps of, ∂y(l)

∂z(l) , ∂z(l)

∂w(l) and ∂z(l)

∂x(l) :

y(l) = ∂L
∂y(l) = ∂L

∂L
· ∂L
∂y(l) = 1 ·

(
y(l) − t

)
(2.3)

z(l) = ∂L
∂z(l) = ∂L

∂y(l) ·
∂y(l)

∂z(l) = ∂L
∂y(l) ·

∂σ(z(l))
∂z(l) = y(l) · σ′

(
z(l)
)

(2.4)

w(l) = ∂L
∂w(l) = ∂L

∂z(l) ·
∂z(l)

∂w(l) = ∂L
∂z(l) ·

∂
[
(x(l))> ·w(l)]
∂w(l) = z(l) · (x(l))> (2.5)

Equation (2.5) shows that computing the weight gradient of layer l requires y(l) and x(l). Similarly,

updating the weight gradient of layer l − 1 will demand y(l−1), as presented below:

y(l−1) = x(l) = ∂L
∂x(l) = ∂L

∂z(l) ·
∂z(l)

∂x(l) = (w(l))> · z(l) (2.6)

(2.7)

The resulting gradient x(l) is often referred to as the data gradient or dx because it is calculated based

on the input data. It is propagated backwards to layer l − 1 as y(l−1) (or dy(l−1)).

In summary Equation (2.3) and Equation (2.5) show that the following operands are required to

update the weights of a fully connected layer l:18

• y(l): The gradient of error w.r.t. y(l), or else known as dy,

• y(l): Layer l’s input during inference

• w(l): Layer l’s weight

• x(l): Layer l’s input during inference

18Not all types of layers require all the data listed. For example, the gradient calculation of convolutions does not require
y.

Chapter 2. Background 27

2.2.3.2 Generalized gradient calculation

In general, if xj has contributed to output element yk in inference, yk will influence the gradient

of xj during the gradient computation. The gradient of L w.r.t. xj is the sum of all yks that xj has

influenced during inference, i.e.,

xj =
∑

k

yk ·
∂yk

∂xj

written in vector form,

x = ∂y
∂x

>
y (2.8)

where ∂y/∂x is often denoted as the Jacobian matrix where Ji,j = ∂yi/∂xj . The calculation of

multiplying the Jacobian with vector dy is often referred to as taking a Vector-Jacobian product or VJP.

The two examples below show the gradient computation methods of an activation layer and a fully

connected layer.

• In activation layers, where xi contributes only to yi by yi = σ(xi), the Jacobian matrix is diagonal

since ∂yi/∂xj = 0, if i 6= j. The Jacobian matrix can be thus flattened into one vector. Accord-

ingly, the matrix multiplication between the Jacobian and y becomes an element-wise product

between two vectors. It is for this reason that Equation (2.4) is optimized to a vector-element-wise

product.

• In fully connected layers, every input element x contributes to all output elements during inference;

in turn, every x element is influenced by all y elements during gradient computation. In other

words, the Jacobian matrix is dense.

The gradient of compounded function can be calculated by chaining VJP calculations. Specifically,

Equation (2.3), Equation (2.4) and Equation (2.5) are three VJPs that together calculated the gradient

of the function L = 1
2‖t − σ(w · x)‖2

2.

2.2.3.3 Automatic differentiation

Machine learning frameworks typically provide the functionality to compute gradients for any com-

putation graph. The gradients are not calculated using finite difference or symbolic differentiation.

Chapter 2. Background 28

C
O

N
V

1

AC
TV

PO
O

L
1

C
O

N
V

2

AC
TV

PO
O

L
2

C
O

N
V

3

AC
TV

C
O

N
V

4

AC
TV

C
O

N
V

5

AC
TV

PO
O

L
5

FC
 1

FC
 2

O
ut

pu
t

Input

AC
TV

AC
TV

∂C
O

N
V

1

∂A
C

TV

∂P
O

O
L

1

∂C
O

N
V

2

∂A
C

TV

∂P
O

O
L

2

∂C
O

N
V

3

∂A
C

TV

∂C
O

N
V

4

∂A
C

TV

∂C
O

N
V

5

∂A
C

TV

∂P
O

O
L

5

∂F
C

 1

∂F
C

 2

∂O
ut

pu
t

∂A
C

TV

∂A
C

TV

Er
ro

r

Figure 2.15: AlexNet’s forward (on the top) and back propagation (on the bottom).
Notice the ∂ sign in front of the layer names in the back propagation stage. The
black arrows show the data flow between layers; the red arrows show the data
produced in inference and reused in the backpropagation stage.

Rather, the steps for automatic differentiation are generated based on the same rule introduced in

§2.2.3.2 and Equation (2.8).

Generically, for any tensor x, all of its consumers Y in inference contribute to x’s gradient during

backpropagation. Two values are needed to calculate x for each consumer yi ∈ Y:

• the error gradient yi, and

• the Jacobian matrix Ji = ∂yi

∂x .19

With those values, the gradient of any x in a computation graph can be easily found by

x =
∑

i

Ji · yi, ∀yi ∈ Y

2.2.4 Workload in CNN training

In summary, every layer that participated in inference has to conduct gradient computations and

weight updates20 in backpropagation. Figure 2.15 portrays forward and backpropagation for AlexNet

[13], in which arrows depict the directions of data flow.

During forward propagation, layer l will receive input x(l) from the previous layer, transforms it with

its set of weights w(l) and outputs the result y(l) to the next layer. In backpropagation, a layer takes

y(l+1) as gradient input and produces x(l), whose gradient calculations often require w(l), x(l) and y(l).21

2.3 TensorFlow

Google’s TensorFlow is one of the most widely adopted machine learning frameworks. It supports a

vast range of machine learning models, and it supports the execution of machine learning applications
19Machine learning frameworks often have defined the Jacobian matrices for commonly used functions.
20Weight update is only required for the layers that use weights.
21Some types of layers require either x(l) or y(l).

Chapter 2. Background 29

x
<latexit sha1_base64="CPn/AH6zyetDuK2aXv+DRQKMHf0=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/oeRIA==</latexit>

w
<latexit sha1_base64="0DLpkSsq+1eBpGeVUYfKUBtZm5M=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/QKRHw==</latexit>

·<latexit sha1_base64="yfc6NYWr3Im+ZBK4Ggu2CK70rVE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvNpl262YTdiVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXZlIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJprxn2WylR3Qmq4FIr7KFDyTqY5TULJ2+Hobua3n7g2IlWPOM54kNCBErFgFK3k91iUYr9SdWvuHGSVeAWpQoFmv/LVi1KWJ1whk9SYrudmGEyoRsEkn5Z7ueEZZSM64F1LFU24CSbzY6fk3CoRiVNtSyGZq78nJjQxZpyEtjOhODTL3kz8z+vmGN8EE6GyHLlii0VxLgmmZPY5iYTmDOXYEsq0sLcSNqSaMrT5lG0I3vLLq6RVr3mXtfrDVbVxW8RRglM4gwvw4BoacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wfaWI62</latexit>

b
<latexit sha1_base64="YJjhR7RY5hyNtVLBH/MerrmOQ7I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZtAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPxi+M6g==</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

�(·)
<latexit sha1_base64="ssZ+5zMBSCpds9Z7Uuq4p8ukzQw=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BItQLyWpgh6LXjxWsLXQhLLZbtql+xF3N4US+ju8eFDEqz/Gm//GbZuDtj4YeLw3w8y8KGFUG8/7dgpr6xubW8Xt0s7u3v5B+fCorWWqMGlhyaTqREgTRgVpGWoY6SSKIB4x8hiNbmf+45goTaV4MJOEhBwNBI0pRsZKYaDpgKNqgPvSnPfKFa/mzeGuEj8nFcjR7JW/gr7EKSfCYIa07vpeYsIMKUMxI9NSkGqSIDxCA9K1VCBOdJjNj566Z1bpu7FUtoRx5+rviQxxrSc8sp0cmaFe9mbif143NfF1mFGRpIYIvFgUp8w10p0l4PapItiwiSUIK2pvdfEQKYSNzalkQ/CXX14l7XrNv6jV7y8rjZs8jiKcwClUwYcraMAdNKEFGJ7gGV7hzRk7L86787FoLTj5zDH8gfP5A0RBkcQ=</latexit>

w>x + b
<latexit sha1_base64="T9Wzam7fE3wLmq2vs8M3DTHMEqA=">AAACBHicbVDLSgMxFM34rPU16rKbYBEEocxUQZdFNy4r2Ad0asmkmTY0kwxJRi3DLNz4K25cKOLWj3Dn35hpR9DWA4GTc+7l3nv8iFGlHefLWlhcWl5ZLawV1zc2t7btnd2mErHEpIEFE7LtI0UY5aShqWakHUmCQp+Rlj+6yPzWLZGKCn6txxHphmjAaUAx0kbq2SUvRHroB8ldeuNpEf1879Mjv2eXnYozAZwnbk7KIEe9Z396fYHjkHCNGVKq4zqR7iZIaooZSYterEiE8AgNSMdQjkKiusnkiBQeGKUPAyHN4xpO1N8dCQqVGoe+qcx2VLNeJv7ndWIdnHUTyqNYE46ng4KYQS1glgjsU0mwZmNDEJbU7ArxEEmEtcmtaEJwZ0+eJ81qxT2uVK9OyrXzPI4CKIF9cAhccApq4BLUQQNg8ACewAt4tR6tZ+vNep+WLlh5zx74A+vjG8spmNI=</latexit>

�
�
w>x + b

�
<latexit sha1_base64="//6F9AVaU15h2989PMmFwb/yPMs=">AAACF3icbVDLSgMxFM3UV62vqks3wSJUhGGmCrosunFZwT6gU0smzUxDMw+SO2oZ+hdu/BU3LhRxqzv/xkxbQVsPBE7OuZd773FjwRVY1peRW1hcWl7JrxbW1jc2t4rbOw0VJZKyOo1EJFsuUUzwkNWBg2CtWDISuII13cFF5jdvmVQ8Cq9hGLNOQPyQe5wS0FK3aDqK+wFxBPOg7AQE+q6X3o1uHIjin+/96Mh1JPf7cNgtlizTGgPPE3tKSmiKWrf46fQimgQsBCqIUm3biqGTEgmcCjYqOIliMaED4rO2piEJmOqk47tG+EArPexFUr8Q8Fj93ZGSQKlh4OrKbFU162Xif147Ae+sk/IwToCFdDLISwSGCGch4R6XjIIYakKo5HpXTPtEEgo6yoIOwZ49eZ40KqZ9bFauTkrV82kcebSH9lEZ2egUVdElqqE6ougBPaEX9Go8Gs/Gm/E+Kc0Z055d9AfGxzeZQqDP</latexit>

w>x<latexit sha1_base64="aOzJUPrt6Iho57cEm6XUQPoX85E=">AAACAnicbVDLSgMxFM3UV62vUVfiJlgEV2WmCrosunFZwT6gU0smzbShmWRIMmoZBjf+ihsXirj1K9z5N2baEbT1QODknHu59x4/YlRpx/myCguLS8srxdXS2vrG5pa9vdNUIpaYNLBgQrZ9pAijnDQ01Yy0I0lQ6DPS8kcXmd+6JVJRwa/1OCLdEA04DShG2kg9e88LkR76QXKX3nhaRD/f+7Rnl52KMwGcJ25OyiBHvWd/en2B45BwjRlSquM6ke4mSGqKGUlLXqxIhPAIDUjHUI5CorrJ5IQUHhqlDwMhzeMaTtTfHQkKlRqHvqnMNlSzXib+53ViHZx1E8qjWBOOp4OCmEEtYJYH7FNJsGZjQxCW1OwK8RBJhLVJrWRCcGdPnifNasU9rlSvTsq18zyOItgHB+AIuOAU1MAlqIMGwOABPIEX8Go9Ws/Wm/U+LS1Yec8u+APr4xuVw5gx</latexit>

Figure 2.16: Computation graph representing y = σ(w>x + b). Dataflow within
the graph is represented by the directed edges, math operations are represented by
circular nodes. The values shown on the edges are the outputs from the operations.
For instance, the � node takes the transposed w and x and calculates their inner
product w> · x.

on a variety of different types of processors and accelerators (CPU, GPU and TPU) in both local and

distributed environments.

TensorFlow, like many other frameworks supporting machine learning such as Torch [5] and MxNet

[3], employs direct acyclic graphs (DAGs), called computation graphs, to represent computations and

dataflow. Figure 2.16 depicts a simple computation graph that represent the calculations of a fully

connected layer, namely σ(y = w>x + b). The n-dimensional data flowing in the computation graph are

called tensors. For example, a 1D tensor is a vector; a 2D tensor is a matrix. This section presents a

background of TensorFlow’s local execution environments.22

2.3.1 Programming and execution model

The TensorFlow framework contains two major components, a user-facing frontend, called the client,

and a backend runtime, called the master. Users interface with the client to define machine learning

models; the client then constructs the computation graphs accordingly. The master is responsible for

optimizing, scheduling and running the computation graph on physical processors.

Client

The TensorFlow client, available in many programming languages including Python and C, is an

interface that machine learning engineers use to create machine learning models by defining the data

flow. For example, the TensorFlow API calls in Listing 2.123 implement a typical TensorFlow application

performing linear regression, whose computation graph is shown in Figure 2.17. In the first step, the

input tensors x and t, and weight tensor w are defined. Next, y is defined as the inner product of x

and w, they are used as symbols in creating the computation graph. Loss, gradient calculations and
22The distributed runtime of TensorFlow is omitted from the discussion.
23Some APIs in the listing are renamed for better readability.

Chapter 2. Background 30

1 # 1. Defining input/output/weights
2 x = tf.input(shape=[BATCH_SIZE, FEATURE_SIZE])
3 t = tf.input(shape=[BATCH_SIZE, OUTPUT_SIZE])
4 w = tf.weight(shape=[FEATURE_SIZE, OUTPUT_SIZE])
5 # 2. Defining inference model
6 y = tf.matmul(w.transpose(), x)
7 # 3. Defining the loss
8 loss = tf.mean_squared_error(y, t)
9 # 4.a. Add gradient calculation steps
10 gradients = tf.gradients(loss)
11 # 4.b. Update weights
12 opt = tf.GradientDescent(learning_rate).apply_gradients(gradients)
13 # Run the model with master
14 with tf.Session(): # opens session with master
15 tf.run(opt)

Listing 2.1: Example TensorFlow application

x
<latexit sha1_base64="CPn/AH6zyetDuK2aXv+DRQKMHf0=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/oeRIA==</latexit>

w
<latexit sha1_base64="0DLpkSsq+1eBpGeVUYfKUBtZm5M=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/QKRHw==</latexit>

update
<latexit sha1_base64="XwIfQYKOdroSFRBPCDgTJps62p4=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5id7U2GzD6c6Q2GJd/hxYMiXv0Yb/6Nk2QPmljQUFR1093lJVJotO1vq7C2vrG5Vdwu7ezu7R+UD49aOk4VhyaPZaw6HtMgRQRNFCihkyhgoSeh7Y1uZ357DEqLOHrASQJuyAaRCARnaCS3h/CEWZr4DGHaL1fsqj0HXSVOTiokR6Nf/ur5MU9DiJBLpnXXsRN0M6ZQcAnTUi/VkDA+YgPoGhqxELSbzY+e0jOj+DSIlakI6Vz9PZGxUOtJ6JnOkOFQL3sz8T+vm2Jw7WYiSlKEiC8WBamkGNNZAtQXCjjKiSGMK2FupXzIFONociqZEJzll1dJq1Z1Lqq1+8tK/SaPo0hOyCk5Jw65InVyRxqkSTh5JM/klbxZY+vFerc+Fq0FK585Jn9gff4Aj0KSnA==</latexit>

1
<latexit sha1_base64="TtIgPQprnJE4HSS++PuM3etxya8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukXat6F9Va87JSv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPe+uMuQ==</latexit>

2
<latexit sha1_base64="jk/1fpohXujb3eq/tOFNvjxoFrw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZq1frrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffW+Mug==</latexit>

3
<latexit sha1_base64="LNUgVcgcWmrkAqMqFwJgrNe8JZM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFSo9ovltyyuwBZJ15GSpCh3i9+9QYxSyOUhgmqdddzE+NPqTKcCZwVeqnGhLIxHWLXUkkj1P50ceiMXFhlQMJY2ZKGLNTfE1MaaT2JAtsZUTPSq95c/M/rpia88adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyVy1XGlel2m0WRx7O4BwuwYNrqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AH7zjLs=</latexit> 4b

<latexit sha1_base64="3H5Gq1TcAK0ar0+S/xc9qUtlHto=">AAAB8HicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xkYeBDZkdBpgws7uZ6TWSDV/hxYPGePVzvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiGW+wSEa6HVDDpQh5AwVK3o41pyqQvBWMb2Z+65FrI6LwHicx9xUdhmIgGEUrPVS7yJ8wDaa9Ysktu3OQVeJlpAQZ6r3iV7cfsUTxEJmkxnQ8N0Y/pRoFk3xa6CaGx5SN6ZB3LA2p4sZP5wdPyZlV+mQQaVshkrn6eyKlypiJCmynojgyy95M/M/rJDi48lMRxgnykC0WDRJJMCKz70lfaM5QTiyhTAt7K2EjqilDm1HBhuAtv7xKmpWyd1Gu3FVLtessjjycwCmcgweXUINbqEMDGCh4hld4c7Tz4rw7H4vWnJPNHMMfOJ8/+/6Qhw==</latexit>

·<latexit sha1_base64="yfc6NYWr3Im+ZBK4Ggu2CK70rVE=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGCaQttKJvNpl262YTdiVBKf4MXD4p49Qd589+4bXPQ1gcDj/dmmJkXZlIYdN1vZ219Y3Nru7RT3t3bPzisHB23TJprxn2WylR3Qmq4FIr7KFDyTqY5TULJ2+Hobua3n7g2IlWPOM54kNCBErFgFK3k91iUYr9SdWvuHGSVeAWpQoFmv/LVi1KWJ1whk9SYrudmGEyoRsEkn5Z7ueEZZSM64F1LFU24CSbzY6fk3CoRiVNtSyGZq78nJjQxZpyEtjOhODTL3kz8z+vmGN8EE6GyHLlii0VxLgmmZPY5iYTmDOXYEsq0sLcSNqSaMrT5lG0I3vLLq6RVr3mXtfrDVbVxW8RRglM4gwvw4BoacA9N8IGBgGd4hTdHOS/Ou/OxaF1zipkT+APn8wfaWI62</latexit>

4a
<latexit sha1_base64="smn8pWvVI61LW6do5rLUTiax8Io=">AAAB8HicbVDLTgJBEJzFF+IL9ehlIjHxRHaRRI9ELx4xkYeBDZkdGpgws7uZ6TWSDV/hxYPGePVzvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiOTR4JCPdDpgBKUJooEAJ7VgDU4GEVjC+mfmtR9BGROE9TmLwFRuGYiA4Qys9dBGeMK2yaa9YcsvuHHSVeBkpkQz1XvGr2494oiBELpkxHc+N0U+ZRsElTAvdxEDM+JgNoWNpyBQYP50fPKVnVunTQaRthUjn6u+JlCljJiqwnYrhyCx7M/E/r5Pg4MpPRRgnCCFfLBokkmJEZ9/TvtDAUU4sYVwLeyvlI6YZR5tRwYbgLb+8SpqVsndRrtxVS7XrLI48OSGn5Jx45JLUyC2pkwbhRJFn8kreHO28OO/Ox6I152Qzx+QPnM8f+92Qhg==</latexit>

y
<latexit sha1_base64="kI7RlH5Xx88yj+zAtipGByUNV1Y=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kwxJRhiG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybkniDnTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkoQttEcql6AdaUM0HbhhlOe7GiOAo47QbT29zvPlGlmRQPJo2pH+GxYCEj2FjpcRBhMwnCLJ0NqzW37s6BVolXkBoUaA2rX4ORJElEhSEca9333Nj4GVaGEU5nlUGiaYzJFI9p31KBI6r9bJ54hs6sMkKhVPYJg+bq740MR1qnUWAn84R62cvF/7x+YsJrP2MiTgwVZPFRmHBkJMrPRyOmKDE8tQQTxWxWRCZYYWJsSRVbgrd88irpNOreRb1xf1lr3hR1lOEETuEcPLiCJtxBC9pAQMAzvMKbo50X5935WIyWnGLnGP7A+fwBABuRIQ==</latexit>

loss
<latexit sha1_base64="lqQRjY0JS+Zs0N2IXGt8R10vBfA=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2k3bpJht2J2IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqGZVqDk2upNKdgBmQIoYmCpTQSTSwKJDQDsa3M7/9CNoIFT/gJAE/YsNYhIIztFK3h/CEmVTGTPvlilt156CrxMtJheRo9MtfvYHiaQQxcsmM6Xpugn7GNAouYVrqpQYSxsdsCF1LYxaB8bP5yVN6ZpUBDZW2FSOdq78nMhYZM4kC2xkxHJllbyb+53VTDK/9TMRJihDzxaIwlRQVnf1PB0IDRzmxhHEt7K2Uj5hmHG1KJRuCt/zyKmnVqt5FtXZ/Wanf5HEUyQk5JefEI1ekTu5IgzQJJ4o8k1fy5qDz4rw7H4vWgpPPHJM/cD5/ABVpkcY=</latexit>

grad
<latexit sha1_base64="nCiISy/azKhCTxc5t/YsM/J5XVA=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeiF48V7Ac0oWw203bpZhN2J2IJ/RtePCji1T/jzX9j0uagrQ8GHu/NMDPPj6UwaNvfVmltfWNzq7xd2dnd2z+oHh51TJRoDm0eyUj3fGZACgVtFCihF2tgoS+h609uc7/7CNqISD3gNAYvZCMlhoIzzCTXRXjCdKRZMKsMqjW7bs9BV4lTkBop0BpUv9wg4kkICrlkxvQdO0YvZRoFlzCruImBmPEJG0E/o4qFYLx0fvOMnmVKQIeRzkohnau/J1IWGjMN/awzZDg2y14u/uf1Exxee6lQcYKg+GLRMJEUI5oHQAOhgaOcZoRxLbJbKR8zzThmMeUhOMsvr5JOo+5c1Bv3l7XmTRFHmZyQU3JOHHJFmuSOtEibcBKTZ/JK3qzEerHerY9Fa8kqZo7JH1ifPxj2kbc=</latexit>

t
<latexit sha1_base64="ZF56g2l+YnHwWTBSzwrOI8zTW2w=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy4r2Ae2Q8mkmTY0kxmSO0IZ+hduXCji1r9x59+YtrPQ1gOBwzn3knNPkEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilx15EcRSEGU775Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boJ+RjUKJvm01EsNTygb0yHvWqpoxI2fzRNPyZlVBiSMtX0KyVz9vZHRyJhJFNjJWUKz7M3E/7xuiuG1nwmVpMgVW3wUppJgTGbnk4HQnKGcWEKZFjYrYSOqKUNbUsmW4C2fvEpatap3Ua3dX1bqN3kdRTiBUzgHD66gDnfQgCYwUPAMr/DmGOfFeXc+FqMFJ985hj9wPn8A+HORHA==</latexit>

Figure 2.17: The steps involved in building the computation graph from the API
calls in Listing 2.1. The step markers at the top of the figure correspond to the step
numbers in the comments of the listing.

weight updates are then defined in the next steps. Lastly, the run method is called to invoke the

TensorFlow master for execution.

The TensorFlow client is unaware of the implementation details required for graph execution. In-

stead, the TensorFlow client invokes the master and passes down the computation graph in a text

format similar to XML.24

Master

The master first reconstructs the computation graph passed to it in text format, into its own data

format. The master then applies a series of optimizations to the graph, including graph pruning, common

expression elimination and constant folding. After the optimization stage, the master starts executing

the graph. Execution of the optimized computation graph follows a breadth-first order. More specif-

ically, once a node finishes execution, the scheduler enqueues operations whose inputs are computed

and available into the ready queue.

24The format is called ProtocolBuffer, an interface that serializes structured data [6].

Chapter 2. Background 31

2.3.2 Computation graph

The computation graph is constructed with nodes (or vertices) and edges.

Nodes Nodes, also called operations, abstract actions that produce or transform tensors in the graph.

An operation can take zero or more inputs and produces zero or more outputs. As such, operations can

represent arithmetic computations, constants or even data transfers tasks. Particularly in Figure 2.16

the ‘>’ node is a unary operation that transposes its input; and the ‘·’ node takes two matrix-inputs

and calculates inner product; data nodes like ‘x’ produce data tensors without taking any input.

Edges Edges set up producer-consumer relationships between operations. In computation graph speak,

tensors are represented by edges.

Using a computation graph allows TensorFlow to decouple data and the computations. That is,

the same computation graph is reused multiple times with different data. TensorFlow also supports

partial execution so that if the user requests the result of w>x in Figure 2.16 (the result from the dot

node), TensorFlow executes only the subgraph that produces w>x and will not execute the subgraph

that involves the ‘+’ and ‘σ’ operations.

One key difference between the client and master graphs is that edges in the client graph do not

have data storage associated. For example, in Figure 2.16, the buffer storing w>x, could be used

to store w>x + b and y because they have the same shapes and in turn require the same amount of

space. However, the client is unaware of the actual implementation of the math operations (whether

they support in-place updates or not), and hence does not concern itself with buffers. It is the backend

master that assigns buffers to tensors.

2.3.3 Execution order

Producer-consumer relationships, or more specifically data dependencies, determine execution orders

in TensorFlow. For instance, operation A runs before operation B if B requires as input, the data

that A produces. Another type of dependency, called control dependency, enforces execution order

between operations that do not have data dependencies. By setting C as A’s control dependency, C

is guaranteed to run before A, even if there is no data dependency between them. If the user sets

another dependency that requires A to run before C, a dependency cycle is created and TensorFlow

will stop and report an error.

Chapter 2. Background 32

2.3.4 GPU support

A specialized TensorFlow interface called StreamExecutor is used for abstracting co-processors

like GPUs. All GPU related tasks, such as performing math operations, and copying memory, are

requested through this interface. However, StreamExecutor abstracts only a subset of the available

GPU functions, such as launching compute kernels or calling device driver functions. Some functions

are not natively supported; for instance, cudaMemPrefetchAsync(), a function that is widely used

in our work. As a result, we had to modify StreamExecutor to also support the other GPU functions

needed to control the virtual memory.

Memory management The TensorFlow runtime allocates all free global memory and manages the

memory internally. As such, tensor allocations and deallocations will not invoke high overhead memory

control directives like cudaMalloc() and cudaFree(). Tensors are reference counted, such that a

tensor can be freed automatically when its last consuming operation finishes.

Chapter 3

Design

In the previous sections, we established the following:

• Computation and dataflow of machine learning applications are often represented by computation

graphs in machine learning frameworks like TensorFlow.

• Nvidia’s virtual memory subsystem on the recent GPU hardware enables running GPU programs

that require more memory than what is physically available in global memory.

• Nvidia provides APIs for applications to issue memory management hints to aid the virtual memory

subsystem in making virtual memory management decisions such as offloading and prefetching data

from and to global memory. This allows the application to issue virtual memory hints based on

its knowledge of the workload.

In this chapter, we first define the problem that we try to solve, and then present the specific

requirements for supporting machine learning applications. In §3.2 we present our design, leading to

a new system we call “AutoVM.”

33

Chapter 3. Design 34

3.1 Motivation and Problem Statement

Motivation

Training state-of-the-art convolutional neural networks is time intensive. For example, training

ResNet-50 [7] on the ImageNet-1K dataset [17] for 90 epochs takes 14 days using a single M40 GPU

and takes 29 hours on a machine with eight Nvidia Tesla P100 GPUs [21]. Our goal is to improve

training speed by optimizing memory access locality. Improved training speed allows machine learning

engineers to apply larger networks to throughput critical applications whose latency requirements would

have previously been attainable only by using simpler networks. Furthermore, performance of different

neural network structures can be evaluated in a more timely manner, leading to faster time to market.

Training state-of-the-art convolutional neural networks is memory intensive. For example, training

Inception v4 [22] with 64-image batches requires over 80GB of memory. Generally, two factors affect

the amount of memory needed:

1. the complexity of the network, e.g., the more layers the more memory is needed, and

2. training batch sizes, i.e., the number of images used in one training iteration.

Using virtual memory in machine learning frameworks allows for more complex networks and larger

batch sizes, because virtual memory size can be significantly larger than the amount of physical memory

available. Although using virtual memory permits running problems that do not fit in physical memory,

the default virtual memory management policy is likely to make suboptimal paging decisions since it is

unaware of the running applications’ memory access patterns.

Specifically for neural network training, the default memory management policy will tend to make

particularly poor paging decisions for problem sets that do not fit in physical global memory, leading

to poor response times. For example, in neural network inference, just consumed outputs are rarely

referenced again for a prolonged period of time. These outputs are thus ideal candidates for paging

out to host memory, but they are not likely to be selected for page-out under the default LRU scheme

as they were just referenced.

As a result, the default mechanism does not page out data promptly. Not paging tensors out in a

timely way exhausts physical global memory and causes memory thrashing. Furthermore, the default

memory management policy cannot predict the data requirements of the subsequent computations.

Chapter 3. Design 35

Consequently, if those operations’ operands were previously paged out, they will be demand-paged in,

page-by-page, as they are being accessed, decreasing memory throughput.

It is perhaps for this reason that virtual memory is rarely used in frameworks like TensorFlow and

Torch. In fact these frameworks make it exceedingly difficult to exploit virtual memory. In the case

of TensorFlow, for example, parameter per_gpu_memory_fraction is typically set to below one by

machine learning programmers to limit the amount of global memory used. If set to a number higher

than one, TensorFlow would use virtual memory. Interestingly, no publicly available document reveals

this behaviour. In practice, a bug in TensorFlow r1.14 prevents the users from using virtual memory

even if per_gpu_memory_fraction was set correctly.

Problem statement

We aimed to design a software layer, AutoVM, that interfaces with the Nvidia driver and machine

learning frameworks, that allows for faster training and more complex network structures, by optimizing

memory locality when virtual memory is used.

Requirements

Our mechanism AutoVM must:

• work within machine learning frameworks like TensorFlow; and

• be integrated into existing machine learning applications with minimal effort, in a way that is as

transparent to the machine learning engineers as possible.

Limitations

The scope of this project is limited in a number of ways however:

• The solution is only optimized for linear CNN networks. We argue in §3.5.1 that our method is

generalizable to a larger class of neural networks.

• We have chosen to integrate and test our method with TensorFlow. While the design principle

applies to any machine learning framework, TensorFlow’s functionalities constrain the actual mech-

anisms we use in our implementation. In particular, we assume that machine learning frameworks

represent the machine learning workloads in the forms of computation graphs.

• Our implementation uses Nvidia’s virtual memory control APIs so that it operates on Nvidia

GPUs only at the moment. We argue in §3.2 that our solution is partially applicable to older

Chapter 3. Design 36

GPUs without virtual memory support. Specifically, one could use the traditional memory copy

APIs like cudaMemcpy() to trigger data transfer between host memory and global memory,

instead of using APIs that controls virtual memory only (like cudaMemPrefetchAsync()), as

is done by vDNN [16].

3.2 Design Overview

Our primary objective is to design a solution that decides which tensors to transparently transfer

between host memory and global memory and when; and to initiate these transfers automatically, all

without requiring machine learning engineers’s programming effort. Fundamentally we use host memory

as a backing store for global memory because host memory tends to (and can be) much larger than

global memory. Our goal is to:

• have tensors being consumed by currently running operations on GPUs, reside in global memory

without experiencing page faults;

• have tensors residing in global memory that will not be accessed in the near future, be transferred

to host memory, and

• have memory transfers overlap with computations so that tensor transfer latencies are hidden and

do not slow down GPU computations.

To achieve these goals, we split the solution into a policy and a mechanism:

• the policy determines which tensors to move and when,

• the mechanism triggers the tensor transfers as instructed by the policy,

AutoVM is designed to be a software layer that conceals from machine learning engineers the pro-

cess of selecting tensors and initiating the tensor transfers. AutoVM first uses the policy to gather

tensor transfer decisions; then, AutoVM triggers the mechanism to inject memory transfer operations

into the TensorFlow computation graph. As such, tensors will be transferred between host memory

and global memory automatically as the computation graph executes. Correspondingly in our Tensor-

Flow implementation,

• The policy that analyzes the computation graphs is implemented in the TensorFlow client. The

policy uses the TensorFlow graph editor module to analyze the computation graph.

• The mechanism is implemented as a TensorFlow operation, called a MemOp(). MemOp() contains

appropriate calls to Nvidia virtual memory API that facilitates the tensor transfers. AutoVM

Chapter 3. Design 37

Training

Inference

Conv 1 Actv Pool Conv2 FC1 FC2 Error

dConv 1 dActv dPool dConv2 dFC1 dFC2

Images
Inference

FC1

Training
FC1

(a) (b)

x
<latexit sha1_base64="m/xxJ4kD8ilb27fTo7Ez4e1Q0yQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI4kXjxCIo8ENmR26IWR2dnNzKyREL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj27nffkSleSzvzSRBP6JDyUPOqLFS46lfLLlldwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1Y9adcJqlByZaLwlQQE5P512TAFTIjJpZQpri9lbARVZQZm03BhuCtvrxOWpWyd1WuNK5LtWoWRx7O4BwuwYMbqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOSFjPY=</latexit>

y
<latexit sha1_base64="YUHCXuBMxIW3Dy9ijNA7owLpa74=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbabt2swm7GyGE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMviAXXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1lGiGLZYJCLVDahGwSW2DDcCu7FCGgYCO8H0bu53nlBpHskHk8boh3Qs+YgzaqzUTAelsltxFyDrxMtJGXI0BqWv/jBiSYjSMEG17nlubPyMKsOZwFmxn2iMKZvSMfYslTRE7WeLQ2fk0ipDMoqULWnIQv09kdFQ6zQMbGdIzUSvenPxP6+XmFHNz7iME4OSLReNEkFMROZfkyFXyIxILaFMcXsrYROqKDM2m6INwVt9eZ20qxXvulJt3pTrtTyOApzDBVyBB7dQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwB5gmM9w==</latexit>

dy
<latexit sha1_base64="1p1UJYTt9v19HYFMiwLwylOmXvY=">AAAB8HicbVBNS8NAEN34WetX1aOXxSJ4KkkV7LHgxWMF+yFtKJvNpl26uwm7EzGE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSAQ34Lrfztr6xubWdmmnvLu3f3BYOTrumDjVlLVpLGLdC4hhgivWBg6C9RLNiAwE6waTm5nffWTa8FjdQ5YwX5KR4hGnBKz0MAD2BHk4zYaVqltz58CrxCtIFRVoDStfgzCmqWQKqCDG9D03AT8nGjgVbFoepIYlhE7IiPUtVUQy4+fzg6f43CohjmJtSwGeq78nciKNyWRgOyWBsVn2ZuJ/Xj+FqOHnXCUpMEUXi6JUYIjx7Hsccs0oiMwSQjW3t2I6JppQsBmVbQje8surpFOveZe1+t1Vtdko4iihU3SGLpCHrlET3aIWaiOKJHpGr+jN0c6L8+58LFrXnGLmBP2B8/kDZoaQxA==</latexit>

dx
<latexit sha1_base64="N8brJJkH1g7mN4RrSEswy75mCuQ=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqexWwR4LXjxWsB/SLiWbzbahSXZJZqVl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgkRwA6777RQ2Nre2d4q7pb39g8Oj8vFJ28SppqxFYxHrbkAME1yxFnAQrJtoRmQgWCcY3879zhPThsfqAaYJ8yUZKh5xSsBKj31gE8jC2WRQrrhVdwG8TrycVFCO5qD81Q9jmkqmgApiTM9zE/AzooFTwWalfmpYQuiYDFnPUkUkM362OHiGL6wS4ijWthTghfp7IiPSmKkMbKckMDKr3lz8z+ulENX9jKskBaboclGUCgwxnn+PQ64ZBTG1hFDN7a2YjogmFGxGJRuCt/ryOmnXqt5VtXZ/XWnU8ziK6Aydo0vkoRvUQHeoiVqIIome0St6c7Tz4rw7H8vWgpPPnKI/cD5/AGUCkMM=</latexit>

dx
<latexit sha1_base64="lydoM3eh8A2hkMye0+jtGBl4VCA=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGC/ZA2lM1m2y7dbMLuRFpCf4UXD4p49ed489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj25nfeuLaiFg94CThfkQHSvQFo2ilxy7yMWbhdNwrld2KOwdZJV5OypCj3it9dcOYpRFXyCQ1puO5CfoZ1SiY5NNiNzU8oWxEB7xjqaIRN342P3hKzq0Skn6sbSkkc/X3REYjYyZRYDsjikOz7M3E/7xOiv0bPxMqSZErtljUTyXBmMy+J6HQnKGcWEKZFvZWwoZUU4Y2o6INwVt+eZU0qxXvslK9vyrX3DyOApzCGVyAB9dQgzuoQwMYRPAMr/DmaOfFeXc+Fq1rTj5zAn/gfP4AYpqQuw==</latexit>

dy
<latexit sha1_base64="HrJovU2Nr7I7de1Meq0Rvstv7sE=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LBbBU0mqoMeCF48V7Ie0oWw2m3bp7ibsTsQQ+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMXGqKWvTWMS6FxDDBFesDRwE6yWaERkI1g0mNzO/+8i04bG6hyxhviQjxSNOCVjpYQDsCfJwmg2rNbfuzoFXiVeQGirQGla/BmFMU8kUUEGM6XtuAn5ONHAq2LQySA1LCJ2QEetbqohkxs/nB0/xmVVCHMXalgI8V39P5EQak8nAdkoCY7PszcT/vH4K0bWfc5WkwBRdLIpSgSHGs+9xyDWjIDJLCNXc3orpmGhCwWZUsSF4yy+vkk6j7l3UG3eXtaZbxFFGJ+gUnSMPXaEmukUt1EYUSfSMXtGbo50X5935WLSWnGLmGP2B8/kDZB6QvA==</latexit>

x
<latexit sha1_base64="6Or89A35CC5mq8YhptWbrwhdG9U=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclaQKuiy4cVnBPqAJZTK5aYdOHsxMxBL6G25cKOLWn3Hn3zhNs9DWAxcO59w7d+7xU8GVtu1va219Y3Nru7JT3d3bPzisHR13VZJJhh2WiET2fapQ8Bg7mmuB/VQijXyBPX9yO/d7jygVT+IHPU3Ri+go5iFnVBvJdYsXconB7GlYq9sNuwBZJU5J6lCiPax9uUHCsghjzQRVauDYqfZyKjVnAmdVN1OYUjahIxwYGtMIlZcXG2fk3CgBCRNpKtakUH9P5DRSahr5pjOieqyWvbn4nzfIdHjj5TxOM40xWywKM0F0QuYBkIBLZFpMDaFMcvNXwsZUUqZNTFUTgrN88irpNhvOZaN5f1Vv2WUcFTiFM7gAB66hBXfQhg4wSOEZXuHNyqwX6936WLSuWeXMCfyB9fkDrAeSCg==</latexit>

y
<latexit sha1_base64="E63YiLu+cQGgnrZMY5ZyXIfi3bE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPBi8cK9gOaUDabSbt0swm7G6GE/g0vHhTx6p/x5r9xm+agrQ8GHu/N7Oy8IOVMacf5tiobm1vbO9Xd2t7+weFR/fikp5JMUuzShCdyEBCFnAnsaqY5DlKJJA449oPp3cLvP6FULBGPepaiH5OxYBGjRBvJ84oXconhfDaqN5ymU8BeJ25JGlCiM6p/eWFCsxiFppwoNXSdVPs5kZpRjvOalylMCZ2SMQ4NFSRG5efFxrl9YZTQjhJpSmi7UH9P5CRWahYHpjMmeqJWvYX4nzfMdHTr50ykmUZBl4uijNs6sRcB2CGTSDWfGUKoZOavNp0QSag2MdVMCO7qyeuk12q6V83Ww3Wj7ZRxVOEMzuESXLiBNtxDB7pAIYVneIU3K7NerHfrY9lascqZU/gD6/MHrYuSCw==</latexit>

Figure 3.1: (a) depicts a simple linear CNN, in which arrows represent dataflow.
Red arrows symbolize data that are produced in inference and reused in training.
Weights and layer parameters are not shown in the figure. (b) on the right shows
an example dataflow in layer FC1’s inference and training.

inserts multiple instances of MemOp() into the computation graph at appropriate locations, as

dictated by the policy. Control dependencies are inserted before and after each MemOp() to enforce

the execution order of computation operations and MemOp()s. TensorFlow’s StreamExecutor

interface is modified to allow MemOp() to issue the appropriate calls to initiate tensor transfers.

• AutoVM fuses the policy and the mechanism, and is packed as a function that machine learning

engineers can call after model definition to enable memory optimization.

The separation of policy and mechanism allows the design to be flexible and extensible. For example,

to enable AutoVM in TensorFlow with older GPUs that do not support virtual memory, the policy

remains as is, while the mechanism that controls global memory needs modification. Specifically, we

will only need to create another implementation of MemOp() that uses memory controlling APIs like

cudaMemcpy() to issue the memory transfer commands manually, instead of managed memory hints.

3.3 Policy

3.3.1 Identifying tensors to move

Here, we consider rules that identify tensors for offloading (transfer from global memory to host

memory) and prefetching (transfer from host memory to global memory). More specifically,

• tensors to offload during inference,

• tensors to prefetch during inference,

• tensors to offload during training, and

• tensors to prefetch during training.

Chapter 3. Design 38

3.3.1.1 Offloading during inference

In a linear CNN, layer l transforms its input x(l), optionally using its weight w(l) and produces

the result y(l). The output y(l) is consumed only by the subsequent layer l + 1. In effect, after layer l

completes execution, only w(l) and y(l−1) are candidates for offloading.1

The different outputs produced by the different layers, combined, consume a significant amount of

memory space. For example, in training VGG16, all the outputs generated from a batch of 128 images,

take up over 12GB of memory in aggregate. On the other hand, all the weights combined consume

about 138MB of memory, about 1% of the total space used. As a result, we have decided not to select

the weights as offloading candidates.

Only a subset of all y’s produced are selected for offloading. Deciding which tensors to offload is

based on two rules: tensor size and reuse distance. Listing 3.1 captures the rules in the algorithmic form.

Tensor size If an output y(i) is small, it is not selected for offloading. The size threshold parameter

is tuned empirically.

Reuse distance If the expected duration between a tensor’s last reference in inference and its first

consumption in training is short, the tensor is not selected for offloading. However, since it is

difficult to estimate an operation’s runtime, we establish a tensor’s reuse distance as the number

of operations between its consumers in inference and training. A short reuse distance means that

the tensor is likely to be used soon, so offloading it may incur additional performance penalties.

The reuse distance threshold is a configurable parameter, that dictates the minimal reuse distance

needed for a tensor to be selected for offloading. Its value can be determined algorithmically if

the exact runtimes of operations are known. However, as the exact runtimes are unknown to

AutoVM, this value needs to be hand-tuned for the best performance, although the default value

that skips the outputs of the last two layers in inference worked well for the CNNs we tested in

our experiments.

3.3.1.2 Prefetching in inference

Layer l’s inference process uses input x(l)and weight w(l) to produce y(l). The input will always

reside in global memory before layer l starts executing, because it was just produced by the previous
1Recall that x(l) and y(l−1) refer to the same tensor.

Chapter 3. Design 39

1 def get_offload_candidates(inference_layers, distance_threshold):
2 offload_candidates = []
3 for layer in inference_layers:
4 tensor = layer.output
5 if tensor.size < size_threshold: continue
6 if tensor.reuse_distance < distance_threshold: continue
7 offload_candidates += [tensor]
8 return offload_candidates

Listing 3.1: Algorithm for identifying offload candidates.

layer. The weight could be in host memory if it was evicted by the runtime. In this case, we rely on

demand-paging to transfer it to global memory given its relatively small size. Therefore, there is no

need to prefetch any tensor in inference.

3.3.1.3 Offloading in training

Layer l computes its gradient using the loss gradient dy(l), and its inference input x(l), and output

y(l) to produces dx(l). Layers with weights also uses their weights to compute the weight gradients dw.

dx(l) and w(l) are allocated right before being produced and are consumed only by the next training

layer l − 1. x(l) and y(l) are usually last consumed in their inference layers’ corresponding gradient

computations. Tensors that are not further referenced are deallocated automatically by TensorFlow,

after their last references, so there is no need to offload them manually. For example, in Figure 3.1,

after processing layer dFC1,

• dy from layer dFC2 is deallocated;

• y from layer FC1 is deallocated;

• x from layer Conv2 is deallocated;

• dx is passed to layer dConv2, and it is deallocated once dConv2 finishes.

In other words, no tensors in training will be selected for offloading.2

3.3.1.4 Prefetching in training

Any tensor that is expected to be accessed in the near future and is not already in global memory

should be prefetched. Prefetching in training has the following constraints:

1. multiple prefetch-transfers cannot overlap, as there is only one DMA engine that transfers tensor

from host memory to global memory,

2This assumption might not be in the case of non-linear networks.

Chapter 3. Design 40

Relu PoolConv

MemOp
Time

Convxc
<latexit sha1_base64="kmHD41oaOxEPOyVF03KZPlIr5NU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Rn/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1dVuq1PI4inMApnIMHV1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBT9o3G</latexit>

xr
<latexit sha1_base64="i2GbJiB4rjUcxAVM7RPf9GoEjl4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9RX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1dVuq1PI4inMApnIMHV1CHW2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBqso3V</latexit>

xp
<latexit sha1_base64="2QtPFQn9NHO/3+MPR8P8mc2aslQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+6d+0i9X3Ko7B1klXk4qkKPRL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRqVe+iWru7rNRreRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AFnqo3T</latexit>

yp
<latexit sha1_base64="LOnyTDr7CsYnxmU0wco8eWWgK8w=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGi/YA2lM120y7dbMLuRAihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJ7czvPHFtRKweMUu4H9GREqFgFK30kA2SQaXq1tw5yCrxClKFAs1B5as/jFkacYVMUmN6npugn1ONgkk+LfdTwxPKJnTEe5YqGnHj5/NTp+TcKkMSxtqWQjJXf0/kNDImiwLbGVEcm2VvJv7n9VIMb/xcqCRFrthiUZhKgjGZ/U2GQnOGMrOEMi3srYSNqaYMbTplG4K3/PIqaddr3mWtfn9VbdSLOEpwCmdwAR5cQwPuoAktYDCCZ3iFN0c6L86787FoXXOKmRP4A+fzB2kwjdQ=</latexit>

yr
<latexit sha1_base64="bHit5cmXgGa2fL/RkyW3a3w5+wY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGi/YA2lM120i7dbMLuRgihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5nfmdJ1Sax/LRZAn6ER1JHnJGjZUesoEaVKpuzZ2DrBKvIFUo0BxUvvrDmKURSsME1brnuYnxc6oMZwKn5X6qMaFsQkfYs1TSCLWfz0+dknOrDEkYK1vSkLn6eyKnkdZZFNjOiJqxXvZm4n9eLzXhjZ9zmaQGJVssClNBTExmf5MhV8iMyCyhTHF7K2FjqigzNp2yDcFbfnmVtOs177JWv7+qNupFHCU4hTO4AA+uoQF30IQWMBjBM7zCmyOcF+fd+Vi0rjnFzAn8gfP5A2w4jdY=</latexit>

yc
<latexit sha1_base64="y04TsgybmTBpg3HbXfntkqSwXiM=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fjw4rGi/YA2lM120y7dbMLuRAihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJ7czvPHFtRKweMUu4H9GREqFgFK30kA3YoFJ1a+4cZJV4BalCgeag8tUfxiyNuEImqTE9z03Qz6lGwSSflvup4QllEzriPUsVjbjx8/mpU3JulSEJY21LIZmrvydyGhmTRYHtjCiOzbI3E//zeimGN34uVJIiV2yxKEwlwZjM/iZDoTlDmVlCmRb2VsLGVFOGNp2yDcFbfnmVtOs177JWv7+qNupFHCU4hTO4AA+uoQF30IQWMBjBM7zCmyOdF+fd+Vi0rjnFzAn8gfP5A1V8jcc=</latexit>

x
<latexit sha1_base64="gxHJCzxsWMshlnSJ5CRvp3/bH3w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48t2FZoQ9lsJ+3azSbsbsQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84hK81jemUmCfkSHkoecUWOl5lO/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVRrzctKvZbHUYQTOIVz8OAK6nALDWgBA4RneIU358F5cd6dj0VrwclnjuEPnM8f4reM8A==</latexit>

Op…

Figure 3.2: Example of offloading yr in inference. yr is input as x in the oper-
ation that handles offloading (MemOp()). The red arrow shows the data depen-
dency. The dashed purple arrows represent ‘control dependencies’, a TensorFlow
mechanism that enforces execution order, such that MemOp() runs after layer Pool
completes, and before an operation in the future (‘Op’ in this case). The control de-
pendency to a future operation is necessary or TensorFlow will remove MemOp() in
the optimization stage, because no operation uses MemOp()’s output. The control
dependency is necessary to enforce execution order, as there is no data dependency
that forces MemOp() to start with operation Conv.

2. prefetched tensor should be available in global memory prior to when they are needed by their

computations, and

3. prefetching begins at the end of some operation.

If a tensor X’s size, combined with the size of the working set of operations between the start of

X’s prefetch and X’s consumption does not fit in global memory, X should not be prefetched to prevent

thrashing. Otherwise, prefetching X will cause the eviction of some pages belonging to the working sets

of the operations in between, only to be later paged back in as they are being accessed; and some pages

of X will be paged out again to make space for those working sets. This results in an excessive amount of

superfluous paging activity and will negatively impact performance. Not prefetching X simply implies

that X is demand-paged in as it is being accessed.

3.3.2 Identifying when to transfer tensors

This subsection describes how to time the tensor transfers, The listings in this subsection use Python

syntax and resemble AutoVM’s TensorFlow implementation.

3.3.2.1 Offloading during inference

Layer l’s input tensor x(l) will be transferred out to host memory immediately after layer l’s compu-

tation completes, if x(l) is not expected to be referenced in the near future. We analyze the computation

graph to identify this. For example, in Figure 3.2, yr is last consumed in the pooling layer during

inference, so yr can be safely offloaded as soon as the pooling layer finishes executing.

Listing 3.2 illustrates the algorithm that locates a tensor’s last referencing operation during inference.

It iterates through all operations that reference the tensor in inference and locates the last one based

Chapter 3. Design 41

1 def get_offload_timing(tensor) -> operation:
2 last_inference_ref = tensor.producer
3 for operation in tensor.consumers:
4 if operation is not inference: continue
5 # the operation with larger id runs first
6 if operation.id > last_inference_ref.id:
7 last_inference_ref = operation
8 # offload after the last reference during inference
9 return last_inference_ref

Listing 3.2: Algorithm for identifying when to offload. The algorithm returns an
operation, meaning that the tensor can be offloaded after this operation finishes.

on the operation’s id and name. We have found experimentally that linear CNNs’ operations’ ids are

ordered chronologically, i.e., an operation with a larger id runs later than an operation with a lower

id. TensorFlow follows a specific naming convention that we use to determine whether an operation is

executed in inference or training (we did not include this check in Listing 3.2 for simplicity.)

3.3.2.2 Prefetching during training

In the common case, offloaded tensors are prefetched before they are needed in training. Determining

the prefetch timing is more difficult because (i) the prefetch operation takes time; (ii) should be in mem-

ory before the operation that needs the tensor starts, but (iii) should not be prefetched too early. Fig-

ure 3.3 shows five different prefetch timing scenarios for prefetching the tensor needed by layer dConv1:

(A) shows that if no prefetching is done, demand paging transfers the accessed pages as they are

accessed. This slows down the execution of layer dConv1 because pages are transferred in on page

faults. After the computation consumes one page, a page fault is triggered to transfer the next

page into global memory, and the computation is blocked until the prefetch completes.

(B) shows that if the prefetching is initiated at the beginning of the previous layer dRelu, and dRelu

executes relatively quickly, then dConv1 blocks until the transfer completes. Although prefetches

are asynchronous, CUDA runtime will not schedule calls to CUDA library functions that use the

data being prefetched, until the transfers complete.3

(C) exemplifies the ideal case4 where the prefetch completes just prior to the start of dConv2. In this

scenario, the tensor transfer latency of the prefetch is completely hidden and the computing cores

are able to run continuously with no delays being caused by tensor transfers.

3CUDA runtime is aware of every tensor used in every call to CUDA library functions, because such functions’ operands
have to be described in detail in the function calls.

4Assuming that layer dConv2’s working set is small and will not cause thrashing as exemplified in case (E).

Chapter 3. Design 42

Time

dConv1dPooldConv2

dRelu

Prefetch

(A)

(C)

(D)
dConv1dPooldConv2

dRelu

Prefetch

(E)

dConv1dPool

Prefetch

dConv2

dRelu

(B)

dConv1dPooldConv2

dRelu

Demand paging

dConv1dPooldConv2

dRelu

Prefetch Excessive paging

Figure 3.3: Examples showing impact of prefetching timing on performance.
Lengths of blocks surrounding layer names depict the runtime of the respective
layers. The tensor size and runtime in each case is independent of each other, that
is, C shows the case that dConv2 requires too much memory and prefetching have
caused thrashing, while dConv2 in case D do not require as much thus no thrashing
is caused.

(D) is similar to case (B), but where prefetching is scheduled too early, concurrent to the execution of

dConv2. This works well only if the working sets of layers dConv2, dPool, dRelu, and dConv1 all

fit in global memory. If they do not, then excessive paging may occur as in case (E).

(E) illustrates the case where prefetching starts too early. Layer dConv2’s working set does not fit

in global memory together with the tensor being prefetched, so the prefetch causes thrashing (as

depicted by the first set of page faults) because there are no physical pages available to store both

dConv2’s output and the prefetched content.

Such thrashing leads to severe performance degradation as discussed in §3.3.1.4. Additionally, the

demand paging involved in moving the tensors required for dConv1 negatively impacts performance

for the same reason described in case (A).

Based on the observations above, we establish two strategies for determining the when to prefetch tensors.

If exact runtimes of operations are known then one viable strategy is to prefetch tensors as late

as possible but guarantee that the prefetched tensor arrives in global memory before its consumption

and under the constraint that the prefetch does not induce trashing. More specifically, assuming the

Chapter 3. Design 43

Time

3 421

Pref(5)

5

Pref(4)
Pref(4)

Figure 3.4: A case that cannot be handled properly by the scheduling strategy.
Here, the prefetch for operation 4 is scheduled and executed after the prefetch for
operation 5. The order of the prefetches for operation 4 and 5 does not match the
execution order of the operations. In such cases, the prefetch for operation 4 will
be the only scheduled prefetch, since operation 4 runs before operation 5.

transfer starts with operation m, the constraint states that the combined size of the prefetched tensor

and the working set of m must fit in global memory so that no excessive thrashing occurs. In case (C)

listed above, the prefetch for dConv1 is scheduled at the start of operation dPool, because

• the combined runtimes of dPool and dRelu are enough to cover the prefetch latency, and

• the working set of dPool and dRelu, together with the prefetch size, fit in global memory.

Listing 3.3 on page 44 presents the scheduling strategy which determines when to prefetch each

tensor. The following is performed on each of the offloaded tensors:

1. Find the operation m that first references tensor t during training, based on the operation id.

2. Calculate when the prefetch should be scheduled, based on the time of copying t over the PCIe

bus. Note we can estimate how long it takes to copy t, since we know the size of t.

3. Check whether the combined working set sizes of all operations between the start of prefetching t

and the start of executing m exceeds the physical global memory limit.

However, there are cases that the algorithm cannot handle properly. For instance, in Figure 3.4,

operation 5’s prefetch requires a long transfer time and is thus scheduled at the start of operation 2.

On the other hand, operation 4’s prefetch needs less time and is scheduled at the start of operation 3.

As a result, operation 4’s prefetch is started after that of operation 5 completes. When the order

of prefetch does not match the order of operation execution, we reverse the order of the prefetches

if the working set sizes permit, as shown in Figure 3.5. This way, the prefetch for operation 4 can

complete before operation 4 starts; while the prefetch for operation 5 is partially done. The execution

of operation 5 will not start until the prefetch completes, but as our tests on GPU virtual memory show

(see §4.2.4), that blocking an operation until all of its tensors are prefetched is faster than depending

purely on demand-paging.

Chapter 3. Design 44

Time

3 421

Pref(5)

5

Pref(4)

Figure 3.5: A fix for the case where the order of prefetch does not match the order
of operation execution. The prefetch for operation 4 is scheduled before the prefetch
for operation 5. The side effect is that, the execution of operation 5 will not start
until the prefetch completes.

1 def get_prefetch_timing(tensor) -> operation:
2 # 1. finding the first operation that references the tensor during training

based on id
3 first_training_ref = tensor.last_referencing_operation
4 for operation in tensor.consumers:
5 if operation is not training: continue
6 if operation.id < first_training_ref.id:
7 first_training_ref = operation
8
9 # 2. find the operations such that transfer latency is covered
10 op_runtime = 0, operations = []
11 for op in first_training_ref.predecessors:
12 if op_runtime >= tensor.transfer_time: break
13 op_runtime += op.runtime
14 operations.append(op)
15
16 # 3. make sure working set size fit in global memory
17 for op in operations:
18 if op.working_set + tensor.size > GLOBAL_MEMORY_SIZE: return None
19 # prefetch at the latest operation
20 return operations.first_element

Listing 3.3: Algorithm for identifying when to prefetch tensors, assuming exact
operation runtimes are known. The algorithm returns an opration, meaning the
tensor’s prefetch should start with that operation.

If exact runtimes of operations are not known a different strategy is needed. We schedule the

prefetching of a tensor as early as possible so that the tensor arrives in global memory prior to being

consumed, under the constraint that

• The size of all prefetched tensors, combined with the working sets’ sizes of operations between the

start of prefetch and beginning of consumption fit in global memory.

In practice, the exact runtimes of operations are not known to AutoVM, so the method assuming

known operation runtimes is not an option. Instead of prefetching as late as possible (when the exact

runtimes are known), we prefetch the tensors as early as possible to maximize the likelihood that a tensor

is made available in global memory before it is accessed. Listing 3.4 on page 45 shows the algorithm for

identifying the prefetch timing. Similar to the previous strategy, it searches the prefetch timing for each

of the tensors offloaded during inference individually, using the following steps:

1. Find the operation m that first references tensor t during training, based on operation id,

Chapter 3. Design 45

1 def get_prefetch_timing(tensor) -> operation:
2 # finding the first operation that references the tensor during training based

on id
3 first_training_ref = tensor.last_referencing_operation
4 for operation in tensor.consumers:
5 if operation is not training: continue
6 if operation.id < first_training_ref.id:
7 first_training_ref = operation
8
9 # find the operations such that the working set size plus tensor size fit in

global memory
10 operations = []
11 for op in first_training_ref.predecessors:
12 if op.working_set + tensor.size > GLOBAL_MEMORY_SIZE: break
13 operations.append(op)
14
15 if operations:
16 # the size of the prefetched tensor is added to the operations’ working set
17 for op in operations:
18 op.add_to_working_set(tensor)
19
20 # return the earliest element in the list so that prefetch occurs as early

as possible
21 return operations.last_element
22 return None

Listing 3.4: Algorithm for identifying the prefetch location, assuming exact
operation runtimes are unknown. The algorithm returns an opration, meaning
the tensor’s prefetch should start with that operation.

2. Iterate through the operations that executes before m. For each such operation, check if that

operation’s working set together with the size of prefetch fits in global memory.

3. Add the prefetch size to the working sets of the operations from prefetch to t’s final consumption.

This is done to prevent prefetching too many tensors that lead to thrashing.

The disadvantage of this strategy is that, the prefetch timings are not precise. Imprecise timings can

lead to computations being blocked until all of their required tensors are transferred into global memory.

Moreover, this greedy method favours the first few tensors processed, because after the prefetch timings

are determined for those tensors, it might become hard to locate prefetch locations for the other tensors.

The scenario depicted in Figure 3.4 cannot be handled correctly by this strategy either. Again, if such

cases arises, the prefetches are scheduled according to the execution order of the operations.

3.4 The mechanism

Given a policy that identifies which tensors to transfer and when, we have designed a mechanism to

trigger the memory transfers accordingly. Specifically, we designed MemOp(), a TensorFlow operation

that wraps calls to Nvidia APIs to transfers specified tensors, as shown in Listing 3.5. Instances of

MemOp() are inserted into the computation graph of the target machine learning application.

Chapter 3. Design 46

1 def MemOp(tensors_to_offload, tensors_to_prefetch):
2 for tensor in tensors_to_offload:
3 offload(tensor)
4 for tensor in tensors_to_prefetch:
5 prefetch(tensor)

Listing 3.5: The overview of MemOp.

The function calls in Listing 3.5, offload() and prefetch(), interface with the Nvidia’s memory

controlling function cudaMemPrefetchAsync() to issue memory transfer commands to the Nvidia

runtime. In TensorFlow, we have modified the StreamExecutor interface to enable the MemOp()’s ac-

cess to virtual memory control. The implementation details of the mechanism are described in Chapter 5.

3.5 Limitations

Our current design has the following limitations:

1. The policy described in §3.3 may not work well under all types of neural networks.

• It can correctly identify the consumers of tensors in inference and training stages if the

networks are layer-based and data flows from one layer to the next. However, the tensor

transfer decisions may not be optimal as we have not optimized our design for network types

beyond linear CNNs.

• If in a non-linear CNN, a tensor is used twice during inference, and the time gap between

the two references is long, offloading the tensor during inference could improve performance.

The current design only allows offloading in inference, so it cannot exploit this potential

performance improvement. The same argument applies to training.

2. AutoVM cannot identify the operations that perform in-place updates because such information

is not provided by TensorFlow. However, knowing whether an operation does in-place update is

important when making tensor transfer decisions. The current solution is to manually examine

the implementations of the operations used in linear CNNs and generate a list of operations that

do in-place update.

3. Our design works sub-optimally when the memory transfer time is longer than most of the compu-

tation runtimes. The calls to the CUDA runtime are invoked from operations, so, memory transfers

can only be initiated at the start of a layer’s computation. Furthermore, the control dependency

method5 we use will block the subsequent computations until the memory transfer completes. If

the computation takes longer, there will be no problem; but if the computation time is less than
5As introduced in §2.3.3, control dependencies are used to enforce execution order of operations when there are no data

dependencies between them.

Chapter 3. Design 47

the memory transfer time, the memory transfer will block the next computation. As a result, if

most computations run faster than the memory transfers, many computations block for memory

transfer, negatively impacting performance.

Chapter 4

Reverse engineering Nvidia virtual

memory

Nvidia does not provide detailed documentation that describes the behaviour of the GPU virtual memory

subsystem. However, for our work it is essential that we understand precisely how the virtual memory

system behaves, since our work primarily targets managing GPU virtual memory to speed up CNN

applications. We have thus designed and conducted a series of experiments to “reverse engineer” the

virtual memory behaviours of Nvidia GPUs.

Our experiments are designed to reveal the following aspects of Nvidia’s virtual memory system:

1. how to launch immediate data transfer between global and host memory, given the fact that

Nvidia provides two APIs for initiating data transfer, i.e., cudaMemAdvise() and cudaMem-

PrefetchAsync();

2. how to transfer data between global and host memory efficiently, in TensorFlow-based machine

learning applications, and

3. what is the page migration throughput over PCI-Express.

Experimental setup

Table 4.1 summarizes information on the system we performed our experiments on. We installed

96GB of host memory in the system, about 9 times the amount of global memory, to ensure there is

enough space on the host side to accommodate the data paged out from global memory.

48

Chapter 4. Reverse engineering Nvidia virtual memory 49

Item Value Specification
Hardware setup

CPU Intel i9-9820x 10 cores @ 3.30 GHz
Memory 96GB DDR4-2666

GPU information
GPU Nvidia RTX 2080Ti Turing TU102 architecture

Compute capability 7.5
Memory size 11 GB ~9.5 GB usable
Memory type GDDR6
Memory bus 352 bit

Memory throughput 616.0 GB/s
Host interface PCI-Express @3.0x16

Measured Interface throughput 13.0 GB/s
Software setup

CUDA Driver version 418.56
CUDA Runtime version 10.1
CUDA cuDNN version 7.5
TensorFlow version r1.14

Operating system version Ubuntu 18.04.1 Linux kernel v5.0.0

Table 4.1: Environment setup.

1 __global__ void kernel(float *input, float *output, size_t num_elem) {
2 int threadId = ... // omitted for simplicity
3 if (threadId < num_elem)
4 output[threadId] = input[threadId] + 1;
5 }

Listing 4.1: CUDA kernel used as a simple computation workload.

Data collection method

We have used C++’s high precision timer to measure kernel run times in our experiments. In this

chapter’s listings, time() marks the places at which time measurements are taken. The amount of data

transferred and the transfer throughput are measured using Nvidia’s Visual profiler.

4.1 cudaMemPrefetchAsync() v.s. cudaMemAdvise()

Nvidia provides two methods, namely cudaMemPrefetchAsync() and cudaMemAdvise(), for

managing data locality. Intuitively, both methods can transfer data between global and host memory,

however, Nvidia documentation does not state clearly as to when the data transfers start after either

method’s invocations. This experiment aims to discover the transfer characteristics of both methods,

and to help us decide which one to use in implementing AutoVM.

Chapter 4. Reverse engineering Nvidia virtual memory 50

1 size_t num_elem = 1 << 29, bytes = num_elem * sizeof(float);
2 float *buf1 = cudaMallocManaged(bytes); // a 2GB buffer
3 float *buf2 = cudaMallocManaged(bytes); // a 2GB buffer
4 kernel<<<>>>(buf1, buf2, num_elem); // launch the kernel
5 cudaDeviceSynchronize(); // wait until the kernel finishes
6 // start data transfer
7 cudaMemPrefetchAsync(buf1, bytes, CPU_DEVICE, stream);
8 cudaMemAdvise(buf2, bytes, cudaMemAdviseSetPreferredLocation, CPU_DEVICE);

Listing 4.2: Test to reveal the difference between cudaMemPrefetchAsync() and
cudaMemAdvise() in transfers from global memory to host memory.

1 size_t num_elem = 1 << 29, bytes = num_elem * sizeof(float);
2 float *buf1 = cudaMallocManaged(bytes); // a 2GB buffer
3 float *buf2 = cudaMallocManaged(bytes); // a 2GB buffer
4 // make sure buf1 and buf2 reside in host memory
5 for (int i = 0; i < num_elem, i++)
6 buf1[i] = i; buf2[i] = i;
7 // start data transfer
8 cudaMemPrefetchAsync(buf1, bytes, GPU_DEVICE, stream);
9 cudaMemAdvise(buf2, bytes, cudaMemAdviseSetPreferredLocation, GPU_DEVICE);

Listing 4.3: Test to reveal the difference between cudaMemPrefetchAsync() and
cudaMemAdvise() in transfers from host memory to global memory.

4.1.1 Method

Listing 4.2 shows the code we use to test the differences in transferring data between the two

Nvidia-provided methods. The kernel that is invoked to represent a simple computation workload is

shown in Listing 4.1.

We allocate two 2GB buffers in GPU virtual memory, launch kernel that accessed these buffers,

and wait until kernel finishes. Then, we use cudaMemPrefetchAsync() to transfer buf1; and use

cudaMemAdvise() to transfer buf2 to host memory. The two buffers will reside in global memory after

having been accessed in kernel. If both methods start transferring data immediately after invocation,

we would observe in the profiler two separate memory transfers after kernel finishes and 4GB of data

will have been transferred in total.

In a separate experiment we test the two methods on data transfers from host memory to global

memory. The test code is shown in Listing 4.3: we ensure the two 2GB buffers are resident in host

memory by accessing all of their elements from the CPU before the transfers start. Next, we call both

Nvidia methods in a similar fashion as Listing 4.2, but change the transfer destination to GPU. If both

methods transfer data to global memory after immediately invocation, we would observe two memory

transfers and 4GB of data being transferred in the profiler.

Chapter 4. Reverse engineering Nvidia virtual memory 51

1 size_t num_elem = 1 << 29;
2 size_t bytes = num_elem * sizeof(float);
3 float *buf1 = cudaMallocManaged(bytes); // 2GB
4 float *buf2 = cudaMallocManaged(bytes); // 2GB
5 float *buf3 = cudaMallocManaged(bytes); // 2GB
6 // transfer buf1 and buf2 to GPU
7 cudaMemPrefetchAsync(buf1, bytes, GPU_DEVICE, stream1);
8 cudaMemPrefetchAsync(buf2, bytes, GPU_DEVICE, stream1);
9 cudaDeviceSynchronize(); // wait until data transfers finish
10 kernel<<<>>>(buf1, buf2, num_elem, stream1); // K1
11 cudaEventRecord(event, stream1); // records an event on stream 1
12 cudaMemPrefetchAsync(buf1, bytes, CPU_DEVICE, stream1);
13 cudaEventSynchronize(event); // blocks CPU until K1 finishes
14 time(); // Measure K2 run time
15 kernel<<<>>>(buf2, buf3, num_elem, stream2); // K2
16 cudaDeviceSynchronize();
17 time(); // Measure K2 run time

Listing 4.4: Test of overlapping memory transfer with computation.

4.1.2 Findings

We only observed the transfers initiated by cudaMemPrefetchAsync() in the profiler, in other

words, calling cudaMemAdvise() did not incur any data transfer in either of the two experiments.

We have thus confirmed that calling cudaMemAdvise() will not incur immediate data transfers, and

decided that we use cudaMemPrefetchAsync() in our implementation of AutoVM.

4.2 Efficient memory transfer between devices

This section presents our experiments that explore how to achieve efficient data transfer between

global and host memory, as well as ways to accelerate kernel execution when global memory is over-

subscribed.

4.2.1 Overlapping memory transfer with computation

In this experiment, we aim to ascertain that we can achieve have computation and data transfer

overlap, by using GPU streams as suggested by Nvidia [18]. If they overlap, then the communication can

be hidden from a performance point of view. This experiment also aims to verify that no page fault will be

generated during the execution of a kernel, if all the data accessed by that kernel reside in global memory.

Methods

Listing 4.4 shows the code we use in this experiment. We create three 2GB buffers and ensure buf1

and buf2 reside in global memory. Then we launch kernel K1 on stream1 using buf1 and buf2.

Next, the event that marks the finish of K1 is recorded on stream1. We then launch the transfer of buf1

Chapter 4. Reverse engineering Nvidia virtual memory 52

Time

(A)

(B)

D2H
K1 K2

Page fault

188 ms 533 ms

67 ms

D2H
K1 K2

Page fault

188 ms 546 ms

Page fault

(C)K1 K2
Page fault

188 ms 418 ms

(D)K1 K2
188 ms 200 ms

Figure 4.1: Profiling results of experiments on Nvidia virtual memory. The lengths
of the blocks are drawn to scale to represent the kernel run times. Buffer allocation
and transferring buf1 and buf2 to global memory are not shown.

to host memory on stream1, so that the transfer starts after K1 finishes. cudaEventSynchronize()

is used to block the CPU, until K1 finishes, and we launch kernel K2 on stream2. In theory, K2 and

the transfer of buf1 should overlap, since they should both start after K1 finishes.

Findings

Figure 4.1 line (A) shows the results of the experiments using the code in Listing 4.4. In the figure,

D2H represents the transfer of buf1 to host memory; the Page Faults block shows the time range

where page faults are generated as K2 accesses buf3. We have observed that no page faults are generated

during K1’s execution, because all the data it accesses reside in global memory.

There were a few unexpected behaviours that we observed however.

1. The start of D2H is delayed by around 70ms to after K1 finishes. However, according to Nvidia’s

documentation on streams, D2H should start right after K1 finishes.

2. K2’s computation does not start until buf1’s transfer completes. This is implied from the fact the

page faults for buf3 starts after buf1’s transfer completes, and the kernel’s only computation task

that generates page faults is when accessing buf3. In other words, if K2’s computation started

with D2H, the page faults should have overlapped with D2H.

3. The profiler reported that the amount of data transferred is around 900MB, which is much smaller

than the requested amount of 2GB. Furthermore, the transferred amount varies across experiments

even though the same code is used.

Chapter 4. Reverse engineering Nvidia virtual memory 53

1 // omitted the first 9 lines, which are identical to Listing 4.4
2 kernel<<<>>>(buf1, buf2, num_elem, stream1); // K1
3 // blocks CPU until the previously submitted tasks are done
4 cudaDeviceSynchronize();
5 kernel<<<>>>(buf2, buf3, num_elem, stream2); // K2
6 cudaMemPrefetchAsync(buf1, bytes, CPU_DEVICE, stream1);

Listing 4.5: The code with the launch order changed to try to overlap K2 and data
transfer. The first 9 lines of code are identical with Listing 4.4 and are omitted
here. Red font highlights the major code changes relative to Listing 4.4.

This experiment shows that (i) launching kernels and transfers in the order in Listing 4.4 does not

overlap computation and data transfers; (ii) if all the data accessed by a kernel resides in global memory,

running the kernel does not generate any page fault.

4.2.2 Alternating the launch order

As the previous methods produce unexpected results, we then tried another order of launching

kernels and data transfers, namely the one shown in Listing 4.5.

Methods

The differences between this method and the previous one are: (i) we do not rely on implicit

synchronization within a stream and we use cudaDeviceSynchronize() explicitly1; and (ii) we

launch buf1’s transfer on stream1 after launching kernel K2 on stream2. As the CPU is blocked

by cudaDeviceSynchronize() until K1 finishes, both data transfer and K2 are launched on idle

streams. K2’s run time is measured from the end of K1 till the end of K2.

Findings

The experimental results are shown on line (B) in Figure 4.1 on page 52. Although the page faults

(and hence the computation) do overlap with the data transfer, the run time of K2 increases relative

to case A. From the profiler, we determined that the global memory throughput is 67.4MB/s when the

red page fault block overlaps with D2H. The throughput increased to 4,295MB/s when page faults are

processed, and there are no ongoing data transfers, shown as the second page fault box in pink.

We thus conclude that page fault handling is the main reason that K2 ran slowly, because global

memory throughput is much lower when page fault handling is running in parallel with a data transfer.

If data transfers and page fault handling could run at full speed independently, K2 would have finished

in a much shorter period of time.
1In Listing 4.4 line 10 and 12, we have assumed launching both K1 and cudaMemPrefetchAsync() on stream1

guarantees that the data transfer starts immediately after K1 finishes.

Chapter 4. Reverse engineering Nvidia virtual memory 54

1 // omitted the first 9 lines, which are identical to Listing 4.4
2 kernel<<<>>>(buf1, buf2, num_elem, stream1); // K1
3 // blocks CPU until previously submitted tasks are done
4 cudaDeviceSynchronize();
5 // pre-access, so that buf3 resides in global memory
6 cudaMemPrefetchAsync(buf3, bytes, GPU_DEVICE, stream1);
7 kernel<<<>>>(buf2, buf3, num_elem, stream2); // K2

Listing 4.6: The code used to avoid page faults generated during executing the
second kernel. The first 9 lines of code are identical with Listing 4.4 and are omitted
here. Red font highlights the major code changes relative to Listing 4.4.

4.2.3 Avoiding page faults

The result from the previous subsection suggests that page fault handling interferes with data trans-

fers between global and host memory. Therefore, it makes sense to eliminate page faults prior to

starting a computation.

We have found that cudaMemPrefetchAsync() can be used to force the pages in a newly al-

located buffer to reside physically in global memory, without having to access the buffer manually.

We call this pre-accessing in the later parts of this dissertation. In this experiment, we aim to as-

certain that pre-accessing can help avoid page faults and in turn reduce page fault handling overhead

to speed up execution.

Methods

We ran the experiment using the code in Listing 4.6. We set up the buffers the same way as in

Listing 4.5; then we launch kernel K1 and wait until it completes. Before launching kernel K2 on

stream2, we pre-access buf3 to global memory on stream1. For comparison, we have also run an

experiment using the same code, but without pre-accessing buf3, so that K2 relies on demand paging

to transfer buf3 to global memory.

Findings

Line C of Figure 4.1 on page 52 shows the result of our experiment where buf3 was not pre-

accessed, but demand paged into global memory; line D shows the result where buf3 was pre-accessed.

By comparing the results from both experiments, we see that pre-accessing buf3 has indeed eliminated

the page faults generated during executing K2; and allowed K2 to complete in a much shorter time.

Relying on demand paging to transfer in buf3, on the other hand, is only half as fast. We conclude

that using pre-accessing yields better run time than relying on demand-paging.

Chapter 4. Reverse engineering Nvidia virtual memory 55

1 // omitted the first 9 lines, which are identical to Listing 4.4
2 kernel<<<>>>(buf1, buf2, num_elem, stream1); // K1
3 // blocks CPU until previously submitted tasks are done
4 cudaDeviceSynchronize();
5 time()
6 // a. transfer buf1 to host memory
7 cudaMemPrefetchAsync(buf1, bytes, CPU_DEVICE, stream1);
8 // b. pre-access, so that buf3 resides in global memory
9 cudaMemPrefetchAsync(buf3, bytes, GPU_DEVICE, stream2);
10 kernel<<<>>>(buf2, buf3, num_elem, stream2); // K2
11 cudaDeviceSynchronize();
12 time()

Listing 4.7: The code used to test transferring buf1 to host memory and avoid
page faults generated during executing the second kernel. The first 9 lines of code
are identical with Listing 4.4 and are omitted here. Red font highlights the major
code changes relative to Listing 4.6.

This result is important for accelerating machine learning applications in TensorFlow, because the

output tensor of a TensorFlow operation is always allocated right before the computation starts. As

a result, the computation can only accesses its output using demand paging. Pre-accessing the output

tensor before starting the computation helps reduce the number of page faults generated during the

computation, and in turn speeds up the execution of the operation.

4.2.4 AutoVM and pre-access

This experiment explores the performance characteristics of running kernels when global mem-

ory is oversubscribed.

Methods

Listing 4.7 shows the code we use for this experiment. The code is similar to the previous tests,

but all buffers are now 4GB instead of 2GB. kernel K1 runs after buf1 and buf2 have been manually

transferred to global memory. After K1 finishes, buf1 and buf3 are managed in three different ways

in a set of three experiments:

1. without any memory optimization, i.e. without pre-accessing buf3 or evicting buf1 to host

memory, on lines 7 and 9,

2. with pre-accessing only; i.e. with line 9 that pre-accesses buf3 on stream1, and

3. with transferring buf1 to host memory on stream1, and pre-accessing buf3 on stream2.

Then, we launch kernel K2 on stream3 using buf2 and buf3. K2’s run time is measured from

the end of K1 till the end of K2.

Chapter 4. Reverse engineering Nvidia virtual memory 56

(A)

(B)

D2H

K1 K2
Page fault

468 ms 1469 ms

D2H

K1 K2
468 ms 1451 ms

Page fault

(C)K1 K2
D2H

468 ms 844 ms

H2D

Figure 4.2: Profiling result of using three 4GB buffers with three different memory
optimization strategies.

Findings

The run times of K2 using the three configurations were 1,469ms, 1,451ms, and 844ms respectively;

Figure 4.2 shows their profiling results. In particular:

1. Line A shows the result of running K2, without using pre-access or data transfers. First, K2 runs

without having to evict pages. But after a while, as global memory become fully populated, some

pages have to be evicted to host memory to accommodate buf3. These evictions are manifested

by the D2H block. Since buf3 is only mapped but no physical frames are allocated, it does not

incur transfers between global and host memory.

2. Line B shows the result of running K2 after pre-accessing buf3. Before K2 starts, CUDA runtime

has evicted some pages to host memory to make space for buf3 in global memory, shown as the

D2H block. However during this process, Nvidia’s memory management subsystem has evicted

pages that belong to buf2 to host memory. As a result, page faults are generated when K2

accesses those evicted pages. The demand-paging process is manifested by the H2D block.

In this case, pre-access does not eliminate the page faults generated; and K2’s run time is only

negligibly better than running K2 without pre-accessing or evicting buf1.

3. Line C shows the result of running K2 after transferring buf1 to host memory, and pre-accessing

buf3 to global memory. Transferring buf1 to host memory has made 4GB of space available in

global memory so that pre-accessing buf3 can complete without having to evict pages. Conse-

quently, running K2 does not generate any page fault, allowing K2 to execute over 74% faster,

compared to the previous two cases.

Chapter 4. Reverse engineering Nvidia virtual memory 57

Using pre-access alone is not sufficient to eliminate K2’s page faults when global memory is over-

subscribed. In fact, transferring buf1 to host memory before pre-accessing new buffers resembles Au-

toVM’s behaviour in TensorFlow applications.

4.3 Throughput of cudaMemPrefetchAsync() transfers

We measured the throughput of data transfers between global and host memory initiated by cud-

aMemPrefetchAsync() using Nvidia’s visual profiler. The throughput was around 12.0GB/s, almost

fully utilizing the available PCI-Express bandwidth of our GPU. However, we found that if the transfers

are accompanied by page fault handling, the throughput could drop to around 9.0GB/s, using only

72.0% of the PCI-Express bandwidth. Our results differed from those obtained by Rhu et al. on an

earlier version of CUDA runtime system [16]. They claimed that the page migration throughput was

only around 80 to 200MB/s, which is much lower than our measured figures.

Chapter 5

Implementation

As outlined in §3.2, AutoVM is split into a policy part and a mechanism part. The policy part analyzes

a machine learning application’s computation graph and decides which tensors to transfer and when.

The policy’s decision then informs the mechanism to initiate the corresponding memory transfers by

inserting instances of our MemOp() operation, into the computation graph at appropriate locations. As

such, memory transfers introduced by using AutoVM’s policy are carried out as TensorFlow executes

the computation graph.

We implement the policy part in the TensorFlow client using its graph editor module; the mechanism,

MemOp(), is implemented in the TensorFlow master. We have also created an interface that allows

existing machine learning applications to easily integrate AutoVM. This chapter discusses the details in

implementing AutoVM’s policy, the interface for integration and the mechanism.

5.1 Overview

Listing 5.1 shows the structure of a simplified TensorFlow application that performs linear regression

(written with TensorFlow’s Python client). There are four typical steps:

1. Model definition: lines 2 and 3 define the input/output and weight variables. Line 4 sets up

the dataflow, in this example, y = xw; and line 5 defines the square loss function. TensorFlow

translates these definitions into a computation graph as shown in the portion to the left of the

dashed line in Figure 5.1.

58

Chapter 5. Implementation 59

1 # 1. model definition
2 x = tf.input(), t = tf.input()
3 w = tf.trainable_variable()
4 y = tf.matmul(x, w) # model definition
5 loss = tf.square_loss(y, t) # a loss function definition
6
7 # 2. gradient optimizer definition
8 gradients = tf.gradients(loss) # generate gradient calculation steps
9 opt = tf.GradientDescentOptimizer(...).apply_gradients(gradients)
10
11 # 3. connect to the backend runtime
12 session = tf.Session()
13
14 # 4. run the application
15 session.run(opt)

Listing 5.1: A simplified TensorFlow application structure

w
<latexit sha1_base64="0DLpkSsq+1eBpGeVUYfKUBtZm5M=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+8C2lEx6pw3NZIYko5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/QKRHw==</latexit>

x
<latexit sha1_base64="CPn/AH6zyetDuK2aXv+DRQKMHf0=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmUF+8C2lEx6pw3NZIYkI5ahf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk37pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcFVL+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6d1GuXed1FOAYTuAMPLiEGtxCHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kD/oeRIA==</latexit> ·

<latexit sha1_base64="eu4+9H+BwruGmCKxzp71cskSIRs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWw2m3btZjfsboQS+h+8eFDEq//Hm//GTZuDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WqCG0TyaXqBVhTzgRtG2Y47SWK4jjgtBtMbnO/+0SVZlI8mGlC/RiPBIsYwcZKnQEJpakMqzW37s6BVolXkBoUaA2rX4NQkjSmwhCOte57bmL8DCvDCKezyiDVNMFkgke0b6nAMdV+Nr92hs6sEqJIKlvCoLn6eyLDsdbTOLCdMTZjvezl4n9ePzXRtZ8xkaSGCrJYFKUcGYny11HIFCWGTy3BRDF7KyJjrDAxNqA8BG/55VXSadS9i3rj/rLWvCniKMMJnMI5eHAFTbiDFrSBwCM8wyu8OdJ5cd6dj0VrySlmjuEPnM8fEIGOyg==</latexit> L
<latexit sha1_base64="0FuUZC1fgPBPPn08GNjeeK0R8oQ=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFNy5cVLAPmA4lk2ba0EwyJBmhDP0MNy4UcevXuPNvzLSz0NYDgcM595JzT5hwpo3rfjultfWNza3ydmVnd2//oHp41NEyVYS2ieRS9UKsKWeCtg0znPYSRXEcctoNJ7e5332iSjMpHs00oUGMR4JFjGBjJb8fYzMmmGf3s0G15tbdOdAq8QpSgwKtQfWrP5QkjakwhGOtfc9NTJBhZRjhdFbpp5ommEzwiPqWChxTHWTzyDN0ZpUhiqSyTxg0V39vZDjWehqHdjKPqJe9XPzP81MTXQcZE0lqqCCLj6KUIyNRfj8aMkWJ4VNLMFHMZkVkjBUmxrZUsSV4yyevkk6j7l3UGw+XteZNUUcZTuAUzsGDK2jCHbSgDQQkPMMrvDnGeXHenY/FaMkpdo7hD5zPH4JTkWY=</latexit>

@L
@w

<latexit sha1_base64="bJPkiOhS3zsXNX3pDbb71py8Rqc=">AAACF3icbVDLSsNAFL2pr1pfUZdugkVwVZIq6LLoxoWLCvYBTSiT6aQdOpmEmYlSQv7Cjb/ixoUibnXn3zhps7CtBwYO59x7597jx4xKZds/RmlldW19o7xZ2dre2d0z9w/aMkoEJi0csUh0fSQJo5y0FFWMdGNBUOgz0vHH17nfeSBC0ojfq0lMvBANOQ0oRkpLfbPmBgLh1I2RUBQxN0RqhBFLb7NsXvSD9DHL+mbVrtlTWMvEKUgVCjT75rc7iHASEq4wQ1L2HDtWXpoPxoxkFTeRJEZ4jIakpylHIZFeOr0rs060MrCCSOjHlTVV/3akKJRyEvq6Ml9RLnq5+J/XS1Rw6aWUx4kiHM8+ChJmqcjKQ7IGVBCs2EQThAXVu1p4hHRQSkdZ0SE4iycvk3a95pzV6nfn1cZVEUcZjuAYTsGBC2jADTShBRie4AXe4N14Nl6ND+NzVloyip5DmIPx9QvylqGs</latexit>

y
<latexit sha1_base64="mEcz1FLhuG1BpP6c5hi50qAIJ0g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f6QuNAQ==</latexit>

Update

t
<latexit sha1_base64="btWuKJH9/rrCxCKL5tGKBdwWU5A=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ipp16reRbXWvKzUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4XeM/A==</latexit>

Figure 5.1: The computation graph built with the code in Listing 5.1. The portion
on the left of the dashed line represents the graph corresponding to the inference
dataflow; the portion on the right represents the gradient calculation and weight
update process.

2. Gradient definition: lines 8 and 9 add necessary gradient computation and weight update steps

into the dataflow by using TensorFlow’s automatic gradient calculation API. The right portion of

Figure 5.1 shows the added nodes for gradient computation (∂L/∂w) and the weight update.

3. Connect to backend runtime: on line 12, we instantiate a session with TensorFlow’s backend

runtime (TensorFlow master).

4. Run the application: run the computation graph on the hardware through the session (line 15).

AutoVM analyzes the computation graph with the gradient calculation and weight update steps, be-

cause AutoVM operates on machine learning applications that have both inference and training dataflow

defined. AutoVM inserts instances of MemOp() — the mechanism — into the computation graph to

trigger memory transfers during execution.

MemOp() is implemented as a user-defined operation in the TensorFlow master.1 A key challenge

we faced is that, MemOp() needs to invoke the appropriate Nvidia APIs to transfer tensors to and from

global memory, while by default TensorFlow does not allow operations to control memory directly.

1TensorFlow requires all operations be implemented in the master.

Chapter 5. Implementation 60

The following sections present the implementation details of the policy and the mechanism.

5.2 The policy

The policy is implemented entirely in the TensorFlow’s Python client2 for two reasons, even though

both TensorFlow’s client and master operate on the computation graph that the user defined:

1. Only the client provides intuitive APIs for graph editing, which allows us to add each operation’s

control dependencies and redirect operation inputs and outputs.

2. Most TensorFlow-based machine learning applications are implemented in TensorFlow’s Python

client. Implementing AutoVM in the Python client makes the integration of AutoVM easier.

The computation graph is a directed acyclic graph represented in TensorFlow client’s graph format

where graph nodes are operations and edges are tensors. Each operation (node) keeps lists of its

input and output tensors; each tensor (edge) keeps records of its producer and consumers. Given any

node in the computation graph, TensorFlow can traverse the graph and determine an execution path that

will produce that node’s result.3 Adding an operation into the computation graph is similar to adding a

node to a linked list: instantiate an operation (node) and route its corresponding input/output tensors.

AutoVM takes in the computation graph generated by TensorFlow’s client, defined in the first two

steps shown in Listing 5.1 and analyzes it to produces a mapping for every tensor, {t : op}, with the

tensors selected for transfer as keys, and the corresponding timings for offloading/prefetching as values.

Here timing is represented by an operation, indicating the transfer should start when the operation

starts. In particular,

• AutoVM gets all the operations used in inference and determines the offload timing for each

operation’s output tensor t by analyzing t’s consumer list. Specifically, t is offloaded after its last

consuming operation opl finishes during inference. So the op in t’s mapping is the next operation

after opl.

• For every tensor t selected for offload, AutoVM identifies when to schedule its prefetch so that the

transfer finishes before t is accessed. AutoVM locates t’s first consumer in training by analyzing

t’s consumers. Then, t’s prefetch is scheduled as early as possible to ensure that t arrives in global

memory before it is consumed, since the exact runtimes of the operations are unknown.

2Python client refers to the Python implementation of TensorFlow’s client.
3This is the reason that on line 15 of Listing 5.1, the run() method’s parameter only includes the opt operation.

Chapter 5. Implementation 61

1 # Method 1
2 loss = ... # model definition
3 gradients = tf.gradients(loss) # generate gradient calculation steps
4 opt = tf.GradientDescentOptimizer(...).apply_gradients(gradients)
5
6 # Method 2
7 loss = ... # model definition
8 opt = tf.GradientDescentOptimizer(...).optimize(loss)

Listing 5.2: Two different methods for adding gradient calculation and weight
update steps in TensorFlow.

AutoVM then uses this mapping produced by the policy stage to insert instances of MemOp() into the

computation graph using control dependencies, a mechanism TensorFlow uses to ensure execution order

between operations that do not have direct data dependencies. For instance, setting op as the control

dependency of an instance of MemOp() m ensures op executes before m does. In our implementation,

op’s computation kernels and m’s memory transfer requests are submitted to different GPU streams, so

that the computation and memory transfer can run in parallel. The computation graph with MemOp()s

inserted is ready to be transferred to the master and start execution.

5.2.1 Integrating AutoVM

This subsection focuses on the interface we provide to integrate AutoVM into existing machine

learning applications.

As described in §5.1, machine learning engineers define the inference dataflow and use a TensorFlow

API to generate the steps for gradient descent and weight update. There are mainly two ways to

generate those steps as shown in Listing 5.2:

1. Manually call tf.gradients() to add the gradient calculation steps and then instantiate an

optimizer to apply the gradients to update the network weights. This method is often used in

machine learning applications where some additional computation is performed on the gradients,

before the gradient is applied to weight update. For example, in some machine learning appli-

cations, the weights are updated using squared gradient instead of the raw gradient computed

by tf.gradient(). So an additional step that squares the gradient needs to be inserted after

calling tf.gradient().

2. Alternatively, if no extra precessing is needed, machine learning engineers can instantiate an opti-

mizer and let it generate the necessary steps. The optimize() method effectively wraps the call

to tf.gradient() and apply_gradients() to provide a simpler interface.

Chapter 5. Implementation 62

1 def avm_gradient(loss, **kwargs):
2 gradients = tf.gradients(loss, **kwargs)
3 avm.optimize(tf.get_computation_graph())
4 return gradients
5 loss = ... # model definition
6 gradients = avm_gradients(loss) # use the new gradient function
7 opt = tf.GradientDescent(learning_rate).apply_gradients(gradients)

Listing 5.3: Example of using the first method to integrate AutoVM.

1 loss = ... # model definition
2 opt = tf.GradientDescentOptimizer(...).optimize(loss)
3 avm.optimize(tf.get_computation_graph())

Listing 5.4: Example of using the second method to integrate AutoVM.

Correspondingly, we have designed two ways to integrate AutoVM into TensorFlow-based machine

learning applications, to accommodate the two methods shown in Listing 5.2.

1. As shown in Listing 5.3, we have created a function avm_gradient() that wraps the calls

to tf.gradient() and avm.optimize(),4 such that calling avm_gradient() will incur

both TensorFlow’s gradient and AutoVM’s optimization functions. Effectively, machine learning

engineers can integrate AutoVM by changing only the gradient function. This method is tailored

for the first method shown in Listing 5.2.

2. Alternatively, machine learning engineers can invoke AutoVM in a separate function call. This is

a universal solution that works in both listed methods, but it requires inserting one line of code

that calls avm.optimize() after instantiating the GradientDescentOptimizer, as shown

in Listing 5.4.

We have implemented both integration methods so that machine learning engineers can choose either

one that better suits their applications. It is important to note that AutoVM performs the exact same

tasks i.e., analyzes the graph and inserts the necessary nodes of MemOp(), regardless of how it is invoked.

5.3 The mechanism MemOp()

The MemOp() method is inserted into the computation graph at appropriate locations identified

by the policy. It transfers its input tensors to and from global memory by calling Nvidia’s managed

memory API, cudaMemPrefetchAsync().

As mentioned earlier, by default TensorFlow does not provide operations for controlling memory. In

fact, an operation does not even have access to tensors’ actual storage locations. Thus, TensorFlow does

not have a way to call cudaMemPrefetchAsync() even though it is essential for AutoVM.
4The function avm.optimize() takes in a computation graph and applies AutoVM’s optimization steps.

Chapter 5. Implementation 63

1 Stream &ThenOffloadGPU(const DeviceMemoryBase &gpu_src, uint64 size,
2 Stream *offload_stream);
3 Stream &ThenPrefetchGPU(const DeviceMemoryBase &gpu_src, uint64 size,
4 Stream *prefetch_stream);

Listing 5.5: The new StreamExecutor function signatures we have added to
support Nvidia GPU’s virtual memory.

MemOp() must be able to call cudaMemPrefetchAsync() from within an operation. In the next

subsections, we present how we achieve this in two parts:

1. Adding the support for calling cudaMemPrefetchAsync() to TensorFlow, and

2. Enabling calling cudaMemPrefetchAsync() from a TensorFlow operation.

5.3.1 Adding support for cudaMemPrefetchAsync()

StreamExecutor is TensorFlow’s interface that abstracts and standardizes the interfaces of stream-

ing processor related functions, including

• invoking functions in high performance libraries like BLAS,

• managing devices functions, for instance, memory allocation, memory copy and synchronization.

StreamExecutor only defines an interface, which standardizes implementations from multiple

different vendors.5 The CUDA-specific implementation of StreamExecutor makes calls to the CUDA

runtime, driver, and libraries like cuBLAS and cuDNN. It is thus natural to add to the interface function

signatures for virtual memory prefetching/offloading and add the corresponding functions that invoke

cudaMemPrefetchAsync() to the CUDA-specific StreamExecutor.

We have added two function signatures for virtual memory control to StreamExecutor as shown

in Listing 5.5. ThenOffloadGPU() is used to offload data, identified by its starting address and length,

to host memory on a specified stream; ThenPrefetchGPU() on the other hand, prefetches data to

global memory. In their respective implementations, we include calls to cudaMemPrefetchAsync()

to transfer the data stored at the address from/to global memory, on the specified stream.

5.3.2 Accessing cudaMemPrefetchAsync() from an operation

Operations are not given direct access to StreamExecutor by TensorFlow. This subsection de-

scribes how we enable an operation to use the StreamExecutor methods that we defined in Listing 5.5.

5The only publicly available and officially supported implementation is for Nvidia CUDA, however.

Chapter 5. Implementation 64

1 Tensor *do_CUDA_GEMM(Tensor *opA, Tensor *opB) {
2 Tensor *output(...); // allocate output.
3 ThenPrefetchGPU(output, size, stream); // pre-access
4 cuda_GEMM(opA, opB, output); // call CUDA function
5 return output;
6 }

Listing 5.6: Simplified example of adding pre-access to an existing operation’s
StreamExecutor implementation. We add the code segment in red to pre-access
the output buffer.

Internally, TensorFlow provides a mechanism to transfer tensors between devices. TensorFlow guar-

antees that all of the operands of an operation op are present on the device that executes op. To

achieve this, TensorFlow inserts special operations, SendOp and RecvOp, that transfer tensors between

devices. For example, transfers from host memory to global memory is scheduled when TensorFlow

identifies (during the graph optimization stage) a tensor is not allocated in global memory while the

operation that needs that tensor executes on GPU. The transfers are initiated through an interface

called Rendezvous. After examining the implementation of Rendezvous, we found that a module

called DeviceContext uses StreamExecutor methods to transfer tensors between devices. We have

also found that the DeviceContext module can be accessed via OpKernelContext, an object that is

available to all operations.6 As a result, we have MemOp() access cudaMemPrefetchAsync() through

several levels of indirection: from OpKernelContext to DeviceContext to StreamExecutor, and

eventually, cudaMemPrefetchAsync().

5.4 Supporting pre-access

As mentioned in Chapter 4, using pre-access to force the pages of a newly allocated buffer to reside

physically in global memory can improve the run time of the operations using that buffer. Pre-accessing

is achieved using cudaMemPrefetchAsync(). When processing machine learning workloads on Nvidia

GPUs, TensorFlow calls CUDA library (cuDNN) functions via the StreamExecutor interface, where

our support for cudaMemPrefetchAsync() is implemented. As such, the pre-accessing for a Tensor-

Flow operation that calls CUDA library functionM and produces output O, is implemented as inserting

a call to cudaMemPrefetchAsync() of buffer O after its allocation, prior to invoking function M .

Listing 5.6 shows an example of pre-accessing the output of a matrix multiplication operation’s CUDA

implementation. The output buffer is allocated right before invoking the corresponding CUDA library

function. We add the code segment in red to pre-access the output buffer.

6OpKernelContext stores the necessary context for operation execution, including the operation’s inputs, outputs,
handle to Rendezvous, and DeviceContext.

Chapter 6

Experiment

In this chapter, we present the results of the experiments conducted to test and verify the effectiveness

of AutoVM. In the next sections, we introduce our environment settings, our experimental design, our

experimental results, and the discussion on the results.

6.1 Environment setup

Table 6.1 summarizes information on the system we performed our experiments on. We installed

96GB of host memory in the system, about 9 times the amount of global memory, to ensure there is

enough space on the host side to accommodate the data paged out from global memory. We use an

Intel i9 processor in the setup because it is readily available, but the GPU virtual memory performance

would be higher in an IBM Power9 system because Power9 CPU supports NVLink that offers almost

twice the bandwidth of PCI-Express 3.0x16.

6.2 Experiment design

We have designed experiments to verify that using AutoVM improves the training speed over default

Nvidia virtual memory. We used three iconic CNN structures to test AutoVM’s effectiveness, namely

AlexNet [13], VGG-19 [19] and ResNet-152 [7], and we used the images in the validation image set of

the ILSVRC2012 dataset [17]. In the next subsections, we present the code used for our experiments,

our test cases, and out data collection methods in detail.

65

Chapter 6. Experiment 66

Item Value Specification
Hardware setup

CPU Intel i9-9820x 10 cores @ 3.30 GHz
Memory 96GB DDR4-2666

GPU information
GPU Nvidia RTX 2080Ti Turing TU102 architecture

Compute capability 7.5
Memory size 11 GB around 9.5 GB usable
Memory type GDDR6
Memory bus 352 bit

Memory throughput 616.0 GB/s
Host interface PCI-Express @3.0x16

Measured Interface throughput 13.0 GB/s
Software setup

CUDA Driver version 418.56
CUDA Runtime version 10.1
CUDA cuDNN version 7.5
TensorFlow version r1.14

Operating system version Ubuntu 18.04.1 Linux kernel v5.0.0

Table 6.1: Environment setup.

6.2.1 Experiment code

Listing 6.1 on page 67 outlines the code we used in our experiments. It consists of the follow-

ing four parts:

1. Specify session configuration: First we set up the session configuration on lines 2 to 6. The

parameter per_process_gpu_memory_fraction controls the amount of memory to allocate

per GPU. We set this value to 4 so that TensorFlow allocates 43,952MB of virtual global memory.

In experiments that do not use virtual memory, this value is set to allocate all available physical

global memory, which is 0.9.1

2. Define inference dataflow: On lines 9 and 10 we set up the inference data flow. The input

images and labels are loaded into host memory prior to when it is needed.2 network() then

calls appropriate TensorFlow methods to construct the inference dataflow for the specified CNN

structure (shown in the example is an instantiation of VGG-19). On line 11, we use the built-in

softmax cross entropy function to calculate the loss.3

1TensorFlow will allocate the 90% of physically available global memory, not 90% of free global memory.
2The images are resized to proper size (224 × 224) before running the experiments, so no extra time would be spent on

image processing during our experiments. We used TensorFlow’s DataSet module for data loading, which prefetches the
next image batches to host memory, while the GPU trains the current batch.

3Softmax cross entropy is a loss function commonly used in multi-class classification problems.

Chapter 6. Experiment 67

1 # 1. specifying session configuration
2 config = tf.ConfigProto(
3 gpu_options=tf.GPUOptions(
4 per_process_gpu_memory_fraction=MEMORY_SCALE_COEF,
5 experimental=tf.GPUOptions.Experimental(use_unified_memory=True)
6))
7
8 # 2. defining inference dataflow
9 input, label = load_batch(batch_size)
10 inference = network(inputs, VGG19)
11 loss = tf.losses.softmax_cross_entropy(inference, onehot_labels=labels)
12
13 # 3. adding gradient calculation steps
14 vars = tf.trainable_variables()
15 grads = avm_gradient(loss, vars)
16
17 # 4. defining optimizer
18 optimizer = tf.train.AdamOptimizer()
19 training = optimizer.apply_gradients(zip(grad, vars))
20
21 # 5. connect to master and run
22 with tf.Session(config=config) as sess:
23 sess.run(tf.global_variables_initializer())
24 for i in range(ITERATIONS):
25 start = time()
26 sess.run(training)
27 batch_train_time = time() - start

Listing 6.1: TensorFlow code used for testing AutoVM. The code segments marked
in red are the parameters we alter across experiments. They are discussed in detail
in §6.2.2

3. Add gradient computation steps: Lines 14 and 15 are used to generate the steps for gradient

computations. In the experiments that do not use AutoVM, tf.gradient() is called on line 15

instead of avm_gradient().

4. Define optimizer: On lines 18 and 19, an Adam optimizer [12] is defined to apply the gradient

results to update weights.

5. Connect and run: The last step instantiates a session of TensorFlow master using the configura-

tions defined in the first step, and run the machine learning application iteratively. Every iteration

trains one image batch, the run time is measured using Python timing APIs on lines 25 and 27.

We call the time taken to train each batch, batch training time.

6.2.2 Test cases

The three parameters that we control in our experiments are memory management policy, batch

size, and number of training iterations (marked red in Listing 6.1). The specific configuration of each

parameter is presented in detail below.

1. Memory management policy: We run experiments with the following three memory manage-

ment policies individually:

Chapter 6. Experiment 68

• virtual memory with the default virtual memory management that Nvidia provides,

• virtual memory with pre-accessing and AutoVM optimizations, and

• traditional memory without enabling virtual memory.

2. Batch size: The amount of memory required in machine learning application training is mostly

linearly proportional to the batch size used. For each CNN structure, we select the batch size that

leads to the maximum memory allocation in training (NM) from around 1GB to around 24GB.

3. Number of iterations: Training a neural network until its accuracy converges typically requires

a very large number of iterations. Since our primary goal is to test the effectiveness of a memory

management policy that theoretically does not interfere with the training process, we ran all our

experiments for 10 training iterations to verify that using AutoVM offers a performance advantage.

However, to verify that AutoVM can improve end-to-end training time and AutoVM does not

disturb training, for example, requiring more iterations to achieve a certain accuracy compared

to using Nvidia virtual memory, we ran full training experiments using VGG-19 under all three

memory management policies with batch sizes 64, 128, 192, and 256.

6.2.2.1 Training environment

The following methods were used to provide a variable-controlled environment that allowed for fair

comparisons between experiments when using different memory management policies and batch sizes.

• Image batches We generated the image batches using images from the ILSVRC2012 validation

dataset (50,000 images in total) in sequential order without shuffling. In particular, the i-th batch

included the images numbered bi to b(i + 1) (non-inclusive), where b is the batch size. As such,

the images in the i-th batch were always identical across all experiments that used the same batch

size, for all values of i.

• Weight In the experiments with VGG-19, we initialized all the network weights using a pre-

trained VGG-19 model4 [1]. Initializing network weights to the same pre-trained model not only

reduced the required training time, but also ensured an identical starting state of training, across

experiments. In the experiments with AlexNet and ResNet-152, weights are randomly initialized

with the same seed to ensure an identical starting state.

• Optimizer We used an Adam optimizer with learning rate 0.0001 [12].5

4The pre-trained VGG-19 model contains weight values of a VGG-19 model that has been trained previously. Although
the pre-trained model might not have been trained with our dataset, it gives our model prior knowledge of common image
features, like lines and colours.

5Adam Optimizer is a widely used gradient descent optimizer.

Chapter 6. Experiment 69

We verified that when training with the same batch size, the loss and accuracy results from every

iteration were identical across multiple experiment runs, regardless of the memory management policy

used. This allowed us to conclude two things. First, AutoVM does not interfere with the training result

as expected. Second, it allows us to compare the end-to-end training times under different memory

management policies using the same batch size.

6.2.3 Data collection methods

For each training iteration, we collected its accuracy, loss, and run time using the same way as

shown in Listing 6.1. End-to-end run time was computed by summing all iteration run times. Further,

we collected the following metrics in our experiments.

• Batch training time was measured from when TensorFlow started the training iteration to when

TensorFlow signalled the completion of the iteration, using Python’s time module. We report the

truncated mean (calculated after removing the max and min values) and the standard deviation

of the measured values.

• Layer-wise memory usage was recorded by using TensorFlow’s application trace. For every

test case, we ran the experiment once with tracing on to collect the memory usage information.

The memory usage information did not vary between different iterations of the same experiment.

Tracing was turned off when measuring training run times.

We primarily focus on the maximum amount of memory allocated during the training process

(NM), which is mostly dictated by the CNN structure and the batch size used. Instead of reporting

the absolute values as is, we report the normalized amount Nm in the presentations below, where

Nm is the ratio between NM and the total amount of physical global memory available (around

9.5GB in our machine).

• The following metrics were collected using Nvidia’s visual profiler in experiments that were not

timed. In each experiment, the following metrics were collected after training the CNN model for

10 iterations:

– the amount of data transferred between global memory and host memory,

– the data transfer bandwidth over PCI-Express, and

Chapter 6. Experiment 70

0 1000 2000 3000 4000
Batch size

102

103

104
B

at
ch

tr
ai

n
in

g
ru

n
ti

m
e

(m
s)

0.0

0.5

1.0

1.5

2.0

S
p

ee
d

u
p

an
d
N
m

ra
ti

os

Runtime of Nvidia VM

Runtime of AutoVM

Runtime of no VM

Speedup (secondary axis)

Nm (secondary axis)

Figure 6.1: The measured run time of one AlexNet training iteration for at different
batch sizes, using AutoVM, Nvidia virtual memory, and no virtual memory

6.3 Results

This section presents the results from our experiments with the three CNNs. In each graph we

present:

• the x-axis plots the batch sizes used in the experiment,

• the primary y-axis plots the measured mean batch training times in logarithmic scale, with errors

of plus/minus one standard deviation,

• the secondary y-axis plots the speed up of AutoVM over Nvidia virtual memory in linear scale

• the secondary y-axis plots the normalized memory usage Nm in linear scale, and

• the secondary y-axis plots a dashed line at y = 1.0 for visual reference.

6.3.1 AlexNet

Figure 6.1 shows the results of our experiments with AlexNet. We tested the different memory man-

agement policies while varying the amount of memory allocated, Nm from 0.08 to 2.14. The behaviour

of AutoVM can be categorized into three segments based on the amount of memory required:

Chapter 6. Experiment 71

1. At smaller memory requirements with Nm ≤ 0.8, it is possible to train AlexNet without using vir-

tual memory, where the corresponding run times were the shortest among the memory management

policies, although the performance advantage of training without virtual memory is insignificant,

at around 3%. With smaller memory requirements, training with AutoVM was slower than with

Nvidia virtual memory by around 8.7%.

2. At intermediate memory requirements where 0.8 ≤ Nm ≤ 1.8, AutoVM reached a peak speed up

of 83.4% at Nm = 1.06.

3. At high memory requirements with Nm > 1.8, AutoVM was around 5% faster than Nvidia virtual

memory.

With lower memory requirements Training without using virtual memory is the fastest until batch

size 1,536, because there is no virtual memory related overhead like page table lookup. All the tensors

generated in training fit in physical global memory, so there is no need to transfer tensors between

global and host memory.

Without offloading and prefetching, the only difference between training using AutoVM and training

using Nvidia virtual memory was whether pre-accessing is used or not. As stated earlier, TensorFlow

allocates output tensors right before the corresponding computations that produce them. Pre-accessing

output tensors helps save page fault handling overhead by forcing the pages of the newly allocated tensors

to be mapped physically, when global memory is not oversubscribed. On the other hand, TensorFlow

manages memory internally to avoid invoking time-consuming memory functions (like cudaMalloc())

on every allocation. Similarly, tensor deallocation in TensorFlow only returns the used spaces to Tensor-

Flow’s internal free memory pool without using free functions like cudaFree(). As a result, the Nvidia

driver only sees one allocation request on start-up and one free request on exit throughout the life cycle

of a TensorFlow application. Consequently, when TensorFlow deallocates a tensor, although its storage

space is marked free by TensorFlow, the Nvidia driver is unaware of the deallocation and will keep the

corresponding page mappings. Later, if TensorFlow allocates another tensor at the same location, the

Nvidia driver will not treat the tensor as newly allocated because the location’s corresponding page

mappings are still in the page table. That is, when everything can fit in global memory, none of the

memory accesses made after the first training iteration6 would generate a page fault.

As such, there should be no performance difference whether or not pre-accessing is used, under

the assumption that pre-accessing introduces no extra overhead. However this assumption directly

6It should be emphasized that in first training iteration, pages of new tensors are not mapped so accesses during the
first training iteration will generate page faults.

Chapter 6. Experiment 72

Input

5.0

Output

3.5

Workspace
21.5 Data not used

70.0

Figure 6.2: The itemized memory utilization when processing AlexNet’s fourth
(inference) convolution layer at batch size 3,328. The layer’s computation uses only
30% of what is allocated.

contradicts our observations that using pre-accessing has negatively impact training time, as depicted

in Figure 6.1 on page 70. Therefore, we conclude that using pre-accessing actually slows down training

because it needs additional processing time, and the processing time is non-negligible compared to the

batch training time.

With moderate memory requirements The maximum amount of memory allocated in training

exceeds the amount of physical global memory, but the working set sizes of most computations fit in

global memory. Training without using virtual memory is no longer possible. Under Nvidia virtual

memory management, as the tensors produced by previous computations accumulate, thrashing starts

once the newly allocated tensor no longer fits in physical global memory along with the tensors used in

previous computations. On the other hand, AutoVM offloaded tensors to host memory in time to make

space for subsequent computations. To illustrate, Figure 6.2 shows the itemized memory utilization in

processing the fourth convolution layer in AlexNet using a batch size of 3,328. The total amount of

memory allocated while processing the layer was 13.64GB, in which

1. the layer’s input and output combined, used 1.16GB of memory,

2. the convolution workspace used 2.96GB of memory, and

3. the tensors used by previous computations, which would not be referenced in the near future,

occupied 9.62GB of memory. The tensors in this category alone do not fit in physical global

memory.

Chapter 6. Experiment 73

In this scenario, the working set of the convolution alone (items 1 and 2 above) is only around

4GB, but global memory is over-subscribed even before running the convolution. Without applying

AutoVM’s optimization, accessing the convolution’s workspace and output would involve heavy paging

activity. AutoVM, on the other hand, offloads the tensors that will not be accessed shortly (those

belonging to the red region), so there is space available in physical global memory to map the workspace

and output. The number of page faults incurred during processing the convolution is greatly reduced

under AutoVM, thus reducing the run time.

With high memory requirements (Nm > 2) The overall training run time of both Nvidia virtual

memory and AutoVM almost double near batch size 3,840, once the working set sizes of the last few

gradient computations7 in training do not fit in physical global memory. The run times are dominated

by page fault handling during the execution of these computations, for the fact that the operations that

have large memory requirements run more than ten times slower, over a 6.7% increase in batch size.

In moderate memory requirement range, those operations’ run times contribute to around 28.5% of the

training time, but in high memory requirement range, they account for over 75.0% of the training time.

This behaviour renders AutoVM’s optimization less significant.

As specified in §3.3.1.4, AutoVM does not schedule prefetches when the working set size combined

with prefetch size exceeds the physical memory limit. In this case, we expect the memory behaviours of

AutoVM and Nvidia virtual memory to be almost identical. Therefore, the slight improvements observed

while using AutoVM were the result of actively offloading tensors during inference for the same reason

explained above: AutoVM offloads the tensors that are not referenced in the near future to relieve global

memory pressure on for later computations.

Potential for further improvements We consider room for performance improvement mainly in the

region of moderate memory requirements. The high memory utilization region is not targeted because

the run time is dominated by heavy paging and will not likely be alleviated by using a better memory

management policy. In the experiment using batch size 2,048 with AutoVM turned on, 91.9GB and

100.0GB of data are transferred to and from global memory at 71.3% and 89.4% of peak measured

PCI-Express bandwidth. In the 24,170ms of training, AlexNet computation was running at full speed on

the GPU for 82.6% of the time, while being blocked by memory operations (offloading, prefetching, pre-

accessing, and page fault handling) for the other 17.4% of time. If the memory optimizations AutoVM

7The working set sizes of the last few gradient computations are the largest during CNN training.

Chapter 6. Experiment 74

0 50 100 150 200 250 300 350
Batch size

102

103

104
B

at
ch

tr
ai

n
in

g
ru

n
ti

m
e

(m
s)

0.5

1.0

1.5

2.0

2.5

S
p

ee
d

u
p

an
d
N
m

ra
ti

os

Runtime of Nvidia VM

Runtime of AutoVM

Runtime of no VM

Speedup (secondary axis)

Nm (secondary axis)

Figure 6.3: The measured run time of one VGG-19 training iteration for at different
batch sizes, using AutoVM, Nvidia virtual memory, and no virtual memory.

introduced no extra overhead, the run time could theoretically be optimized further by 17.4%. The main

optimization blocker here is the GPU virtual memory behaviour during inference when global memory

is over-subscribed: AutoVM-initiated transfers and pre-accesses launched prior to starting an operation

block the operation until they finish. The computation runs the fastest, even though the transfers and

pre-accesses are almost synchronous, as demonstrated in §4.2.4.

6.3.2 VGG-19

Figure 6.3 shows the mean batch training time of VGG-19 for Nm ∈ (0.14, 2.73). AutoVM attains

its peak speedup near Nm ≈ 1.6, at 2.53×. Similar to the result in AlexNet, AutoVM’s performance

can be summarized into three segments:

1. Before reaching Nm = 0.8, training without using virtual memory was still the fastest, but not by

much (about 5%) compared to using the two other memory management policies. Training with

AutoVM was around 3.24% slower than with Nvidia virtual memory.

2. In the range 0.8 ≤ Nm ≤ 1.8, the speedup of AutoVM peaked near Nm = 1.0 (2.53×) and slowly

decreases to 1.63 × at Nm = 2.0,

3. Above Nm = 2.0, AutoVM’s speed up further decreased from 41.4% to 17.9% at Nm = 2.73.

Chapter 6. Experiment 75

0 50 100 150 200 250 300 350
Batch size

103

104
B

at
ch

tr
ai

n
in

g
ru

n
ti

m
e

(m
s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
p

ee
d

u
p

an
d
N
m

ra
ti

os

Runtime of Nvidia VM

Runtime of AutoVM

Runtime of no VM

Speedup (secondary axis)

Nm (secondary axis)

Figure 6.4: Measured one training iteration run time of ResNet-152 at different
batch sizes, using AutoVM and Nvidia virtual memory.

The speedups AutoVM attained for VGG-19 with Nm < 0.8 is similar to that in AlexNet: using

pre-accessing introduced extra performance overhead and thus slowed down training. AutoVM achieved

higher speedup with Nm > 2.0 because there are more convolution computations in VGG-19 compared

to AlexNet, and convolution computations benefit from the offloads AutoVM initiates during inference,

as explained in §6.2.

At batch size 128, the transfer speeds of offload and prefetch were 86.3% and 76.9% of the measured

peak PCI-Express bandwidth. The GPU compute cores were only actively running for 1,031ms out of

the 1,850ms batch training time. About 58.6% of the idle time resulted from the computations being

blocked by AutoVM introduced memory transfers while pre-accessing was the main cause of the other

stalls. If no extra overhead was introduced by performing offload/prefetch the batch training time would

be shortened to around 1,500ms, around 23.3% faster than the current solution. In theory, the run time

could be shortened to 1,031ms if the computations could run at full-speed constantly and the memory

optimizations introduces zero extra overhead.

6.3.3 ResNet-152

Figure 6.4 shows the results from experiments using ResNet-152, with Nm ∈ (0.7, 3.5). Specifically,

Chapter 6. Experiment 76

1. Before reaching Nm = 0.7, training with AutoVM is around 19% slower than with Nvidia virtual

memory. Training without virtual memory is still the fastest among the three memory management

policies, but the advantage is insignificant, at about 3%.

2. In the region 1.0 ≤ Nm ≤ 1.5, the speedup of AutoVM peaked at 79.0% and then dropped to

around 20%.

3. In the region Nm > 1.7, the speedup of AutoVM stably converged to around 20%.

AutoVM was able to achieve moderate speed up even at higher memory utilization, because ResNet-

152 is constructed with many smaller convolution computations that use less data, as compared to

the convolution computations in AlexNet. ResNet-152 benefits more than AlexNet from the offloads

AutoVM makes during inference and achieves higher speedups at higher memory requirements because

the computations of ResNet-152 are mostly dominated by convolutions.

At batch size 112 where AutoVM achieved most speedup, 102.1GB and 98.6GB of data were trans-

ferred from and to global memory, at 99.8% and 58.1% of peak PCI-Express bandwidth, respectively.

Computations were running for 89.3% of the total run time.

6.3.4 Full Training Run Experiment

We ran a set of experiments to measure the training time8 required to reach 85% top-1 training

accuracy. For this we used VGG-19 with the validation set of ILSVRC12 images, We trained the

network at batch sizes 64, 128, 192, and 256 using configurations specified in §6.2.2.1. We compare the

training time obtained under AutoVM, Nvidia virtual memory, and no virtual memory.

Figure 6.5 shows the comparison of end-to-end training times under the three memory management

policies. The y-axis plots the total training time in linear scale and the x-axis plots the batch size.

When using no virtual memory, TensorFlow was only able to train with batch size 64. We have recorded

the number of iterations needed: 24,000 for 64-image batches, 6,000 for 128-image batches, 3,800 for

192-image batches, and 2,200 for 256-image batches.

At batch size 64, training using no virtual memory beat Nvidia virtual memory by 6.96% and

AutoVM by 13.24%. At larger batch sizes 128, 192, and 256, AutoVM is 1.98, 1.82 and 1.53 times

faster than Nvidia virtual memory.

8In our other experiments, we trained the networks for only 10 iterations to measure the batch training time.

Chapter 6. Experiment 77

64 128 192 256
Batch size

10000

12500

15000

17500

20000

22500

25000

27500
T

ot
al

tr
ai

n
in

g
ti

m
e

(s
)

5

10

15

20

25

N
u

m
b

er
of

tr
ai

n
in

g
it

er
at

io
n

s
n

ee
d

ed
(t

h
ou

sa
n

d
)

AutoVM

NvidiaVM

NoVM

Training iterations

Figure 6.5: The training time of VGG-19 to achieve 85% accuracy, versus batch
size, using three different memory management strategies. Only batch size 64 is
trainable if no virtual memory is used. The secondary y-axis plots the number of
iterations needed for each batch size, in thousand. The same number of iterations
were needed regardless of the memory management policy used.

As can be observed, the end-to-end training time grows with the batch size under both AutoVM and

Nvidia virtual memory. Although training using larger batch sizes generally requires fewer iterations,

the longer run times of each iteration (under larger batch sizes) increases faster and causes the longer

training times. Increasing the batch size from 64 to 256, triples the amount of memory required in

training from Nm = 0.68 to 2.04. But the training time under AutoVM increases by only 81%, but

triples under Nvidia virtual memory.

Although training with batch size 64 was the fastest in our experiments, AutoVM allows machine

learning engineers to explore using larger batch sizes without much performance penalty. In practice,

using larger batch sizes has advantages as pointed out by Smith et al. [20]. We only tested training

under a very specific setting that used a pre-trained model and a restricted dataset, our results are only

meant to compare the performance impact of different memory management policies.

Figure 6.6 shows the time required to attain a certain accuracy. The almost-linear curves in the

logarithmic scale plot imply that the run times are exponential in linear scale. Further, the time required

to acquire one percent more training accuracy is also exponential. The trends of the different run time

curves, and they are similar in that they are steeper at both ends.

Chapter 6. Experiment 78

10 20 30 40 50 60 70 80
Training accuracy (%)

102

103

104

T
ot

al
tr

ai
n

in
g

ti
m

e
(s

)

Batch of 64

Batch of 128

Batch of 192

Batch of 256

AutoVM

Nvidia VM

No VM

Figure 6.6: The time required to train VGG-19 to a certain accuracy in logarithmic
scale. The solid lines show the results from using AutoVM; the dashed line show
the results of using Nvidia virtual memory; the results using the same batch size
are shown in the same colour.

Speedup at Nm

Max speed up/Nm 0.5 1.0 1.5 2.0 2.5
AlexNet 83.4% @ 1.06 -8.73% 83.4% 48.7% 6.27%
VGG-19 153.4% @ 1.03 -3.24% 153.4% 78.2% 41.4% 24.6%

ResNet-152 79.0% @ 1.15 -19.0% 22.8% 68.1% 20.0% 16.4%

Table 6.2: The speedup achieved by AutoVM, shown in percentages, at different
levels of memory requirements.

6.3.5 Summary of results

Table 6.2 summarizes the speedups attained by AutoVM over Nvidia virtual memory in the three

tested neural networks, at different batch sizes that lead to Nm of 0.5, 1.0, 1.5, 2.0, and 2.5. In our

experiments, using AutoVM is slower compared to Nvidia virtual memory, before the maximum memory

allocation reaches Nm = 1.0; the speedup quickly increases after Nm = 1.0 and decreased at higher

memory utilization after Nm > 2.0 but remains positive.

Chapter 6. Experiment 79

6.4 Discussion

There are mainly two factors that contribute to the speed up with AutoVM:

1. Pre-accessing offers better performance compared to relying on demand-paging, according to our

experiments with Nvidia’s virtual memory system (refer to Chapter 4). Pre-accessing, however,

does add extra overhead, which is more significant at lower batch sizes where the batch training

time is only hundreds of milliseconds. The overhead is mostly offset by the performance advantages

it brings about at higher batch sizes.

2. AutoVM’s memory management policy can make space in global memory by transferring tensors

that will not be used in the near future to host memory.

At lower memory utilization Nm < 1, there is no need to offload or prefetch tensors because the ten-

sors generated during the training process are able to fit in physical global memory. The run time will be

negatively impacted if any transfer latency is not hidden under computations. The performance degra-

dation at lower memory utilization results from the extra overhead introduced by using pre-accessing,

for the reasons explained in §6.3.1.

In the region 1.0 ≤ Nm ≤ 2.0, pre-accessing and automatic data transfers for offloading and prefetch-

ing both contribute to the speedup. In the experiment with AlexNet using batch size 2,048 (Nm = 1.04);

using pre-accessing sped up the application 53.4%. We were able to accelerate the application by an ad-

ditional 26.0% after enabling automatic data transfer. Using pre-accessing did introduce extra overhead,

but at this level of memory utilization, pre-accessing a tensor in whole before its computation starts is

much faster than paging it in on a per-page basis during the computation.

At high memory utilization, the performance benefit from pre-accessing become less significant

compared to the time required to handle heavy paging. The observed performance advantage is primarily

a result of AutoVM offloading tensors during inference to make space for subsequent computations.

6.5 Future improvements

The experiments confirmed that using AutoVM can lead to performance improvements in train-

ing CNNs. Ideally, AutoVM should run without introducing any overhead by hiding all added tensor

transfers concurrent other computations. However, AutoVM’s potential is limited mainly by two factors:

1. AutoVM’s policies are not well optimized because of the lack of operations’ exact run times.

Chapter 6. Experiment 80

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 1.125 1.250

Offload threshold size (GB)

5100

5200

5300

5400

5500

5600

5700

B
at

ch
tr

ai
n

in
g

ti
m

e
(m

s)

Figure 6.7: The batch training times under different offload size threshold parame-
ter. We tuned the parameter with AlexNet and batch size 3,072 (Nm ≈ 1.4).

2. Nvidia’s virtual memory subsystem cannot hide the tensor transfer latencies under computations

completely.

The following subsections identify AutoVM’s possible improvements.

6.5.1 Further optimizing AutoVM

AutoVM’s policies would be more robust if the exact run times of the operations are known. A

possible solution is to profile the application first and use the results to guide AutoVM towards better

memory management decisions. However, we were not able to implement this strategy, in a way that

is easy to integrate into existing machine learning applications under the current TensorFlow program-

ming model. One major limitation of TensorFlow is its use of a static computation graph, which means

the computation graph cannot change during execution. If operations could be added dynamically at

runtime, we could use the profiling results gathered by running the application once without enabling

AutoVM and then use the collected information to make memory management decisions in later itera-

tions. We thus argue that we could further improve AutoVM’s performance by using a framework that

supports adding operations dynamically (like Torch) during execution.

Furthermore, AutoVM relies mainly on one empirically determined parameter: the size threshold

that determines whether a tensor is offloaded during inference. If the threshold is set too small, AutoVM

offloads and prefetches add extra overheads and negatively affects training time. On the other hand,

if this parameter is set too high, AutoVM would prevent many tensors from being offloaded, defeating

the purpose of using AutoVM. In our experiments, this parameter was tuned while in the moderate

Chapter 6. Experiment 81

memory usage region, at Nm ≈ 1.4, while training AlexNet. Figure 6.7 shows the batch training time

at different values of the threshold parameter. The difference between the longest and shortest run

time is around 11.8%.

Although the parameter was tuned to be optimal for a specific model and batch size, there is no

guarantee that the same value will be optimal in other model/batch size combinations. We expect

AutoVM would offer better performance if the parameter is automatically tuned for a specific network

structure. The tuning can be achieved by exhaustively searching the parameter value space. We did not

include this feature in AutoVM because it cannot be implemented under our current integration interface.

Chapter 7

Related work

Previous works related to our work described in this dissertation studied methods to enable more complex

neural networks to train on memory-limited GPUs by reducing the required GPU memory footprint.

None of these methods use GPU virtual memory.

vDNN [16] proposed to virtualize the tensors stored in global memory, by transparently transferring

tensors produced in inference to host memory and prefetching those tensors back to global memory

prior to being accessed during training. vDNN uses a rather naïve heuristic to decide which tensors

to offload: either all output tensors, or only the ones produced by convolution operations. Another

simple heuristic is used to time the prefetch: for each layer l, vDNN finds the next closet layer m, whose

operands need prefetching; and initiates the prefetch for m’s operands when starting l’s computation.

Without using hardware virtual memory support, vDNN explicitly uses the memory copy command

cudaMemcpyAsync() to asynchronously copy data between CPU and GPU. However, it claimed that

the page migration bandwidth when using GPU virtual memory is 80 to 200MB/s. But according to our

experiments, the bandwidth can usually be over 8GB/s, which is over 70% of the bandwidth achievable

by using explicit cudaMemcpyAsync(). vDNN’s performance results were normalized to a baseline

where no memory optimization was applied. In training VGG-16 with batch size 256, vDNN was 18%

slower than their oracular baseline.1 In our experiments at the same batch size with VGG-19, a slightly

larger network than VGG-16, AutoVM is able to train the network 53% faster than using Nvidia virtual

memory. We could not compare our results directly without vDNN’s actual run time figures.

1Oracular, because they could not train the network on any single-GPU setup as of their writing. The baseline is
derived from running each required computation separately.

82

Chapter 7. Related work 83

Chen et al. [4] proposed a method that discards a subset of data generated in training and recomputes

them before they are needed during back-propagation. In extreme cases, the GPU memory footprint

could be reduced to O(logn) in a n-layered network. For example, the GPU memory footprint of training

ResNet-1000 was reduced from 48GB to 7GB in their experiments. However, the paper did not include

experimental results that show the impact their solution poses on runtime.

SuperNeurons [23] by Wang et al. combined the concepts of the previous two works, which selectively

offloads/prefetches tensors and recomputes some others. A cost model decides whether a tensor should

be offloaded to host memory, or discarded for recompute. Wang et al. also proposed two other methods

to optimize global memory usage. First, liveness analysis analyzes tensor dependencies between com-

putations and frees tensors that are no longer referenced. Second, Unified Tensor Pool manages global

memory internally to reduce the overhead in handling allocation and free requests. However, they failed

to realize that both methods are applied by machine learning frameworks like TensorFlow by default.

Layup [10] extended SuperNeurons that it characterizes the performance implications of performing of-

fload/prefetch and recompute for each type of layer; and then decides whether the output of a specific

type of layer should be optimized with the offload/prefetch approach or the recompute approach. Zhang

et al. [29] proposed two methods to optimize memory usage in GPU-based training: a memory pool

that alleviates memory external fragmentation; and a memory swapper to transfer data that will not be

used in the near future between global and host memory. The memory swapper uses a scheduler that

implements a priority scoring system to decide which data to transfer and uses Bayesian optimization to

automatically tune the scoring system. However, the work did not disclose the exact algorithms used in

the scheduler and the memory swapper. Their work introduced nearly no overhead while SuperNeurons

had over 40% added overhead, in training VGG-19 at 20% memory footprint reduction.

Le et al. [14] aimed at transferring the data with long reuse distances between global and host mem-

ory. The distance between any two operations is defined as the difference between their corresponding

indices that are found by topological sorting the computation graph. They also integrated their design

in TensorFlow, using a very different mechanism for data transfer than ours. However, they did not

use virtual memory in the work. The results show that the work increased the ResNet-50 batch size

trainable on memory limited GPUs; but they did not discuss the added performance penalty in depth.

Other researchers have tried to minimize the memory usage by reducing neural network sizes by

removing neural connections that have near-zero weights [9], or by using lower precision data formats [11].

Chapter 7. Related work 84

These works primarily consider saving memory usage by minimizing the weight sizes that only account

for a small portion of memory usage in training CNNs.

Chapter 8

Conclusion

The amount of memory resources available on a GPU limits the complexity of CNNs the GPU can train.

Although using GPU virtual memory allows training more complex neural networks with limited physical

global memory, such trainings are frequently accompanied by heavy performance penalty because GPU’s

default memory management policy is unaware of CNNs’ workloads and is often unable to make educated

memory management decisions.

This research project aims to develop a GPU virtual memory management policy that accelerates

CNN training on memory-limited GPUs. We have developed AutoVM that actively manages GPU

virtual memory, in a way that is almost transparent to the machine learning applications.

AutoVM achieves its optimizations by transferring out tensors that are recently produced but will not

be immediately accessed, to host memory to make space for subsequent computations (offload); the of-

floaded tensors are transferred back to global memory before they are accessed again (prefetch). AutoVM

uses a heuristic to control the timings of offloads and prefetches and to minimize the overhead intro-

duced by the added memory transfers. Furthermore, during reverse-engineering Nvidia’s virtual memory

system we have found a method called pre-accessing to accelerate computations, by forcing all operands

of a computation to be physically resident in global memory. At runtime, AutoVM interfaces with the

Nvidia driver to issue the corresponding memory transfer requests. We have implemented AutoVM in

TensorFlow so existing machine learning applications can benefit from AutoVM’s memory optimizations.

AutoVM has been tested in TensorFlow using three iconic CNN structures: AlexNet, VGG-19 and

ResNet-152. We have observed non-trivial performance improvements of using AutoVM v.s. using

85

Chapter 8. Conclusion 86

Nvidia virtual memory, in both benchmarks1 and full-training experiments. We have also confirmed

that using AutoVM improves end-to-end training time and does not interfere with the training pro-

cess. In particular, VGG-19 training with batch size 192 is 1.98 times faster with AutoVM than with

Nvidia virtual memory.

Although AutoVM achieved speedups over Nvidia virtual memory, its performance is limited by the

following factors, and should be improved accordingly in the future.

1. TensorFlow’s use of static computation graph prevents AutoVM from acquiring precise runtimes

and scheduling tensor transfers accordingly. We expect AutoVM to further accelerate training by

taking into account the operations’ exact run times.

2. AutoVM uses tunable parameters, whose values need to be exhaustive searched specifically for

every combination of CNN structure and batch size. We did not include this search function in

our current AutoVM implementation.

We claim the following contributions in this dissertation.

1. We have reverse engineered Nvidia’s GPU virtual memory system to reveal some of its performance

characteristics,

2. We have designed an active GPU virtual memory management policy — AutoVM, to acceler-

ate CNN training on memory-limited GPUs, by analyzing the computation graphs of CNNs and

scheduling tensor transfers and

3. We have integrated AutoVM in TensorFlow, a widely used, industrial standard framework, and ver-

ified AutoVM is able to deliver non-trivial performance improvement comparing to using Nvidia’s

default memory management policy.

1We only train a CNN ten iterations in benchmark experiments.

Bibliography

[1] VGG19 and VGG16 on Tensorflow. https://github.com/machrisaa/tensorflow-vgg, 2016.

[2] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,

D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and

Zheng, X. TensorFlow: a system for large-scale machine learning. In Proceedings of the 12th

USENIX Symposium on Operating Systems Design and Implementation (2016), USENIX, pp. 265–

283.

[3] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., and

Zhang, Z. MXNet: a flexible and efficient machine learning library for heterogeneous distributed

systems. In Proceedings of Advances in Neural Information Processing Systems 29 (2015), NIPS.

[4] Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep nets with sublinear memory

cost. arXiv preprint arXiv:1604.06174 (2016).

[5] Collobert, R., Bengio, S., and Mariéthoz, J. Torch: a modular machine learning software

library. Tech. rep., Idiap, 2002.

[6] Google. Protocol buffers. https://developers.google.com/protocol-buffers/.

[7] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016),

IEEE, pp. 770–778.

[8] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward networks are universal

approximators. Neural Networks 2, 5 (1989), 359–366.

87

https://github.com/machrisaa/tensorflow-vgg
https://developers.google.com/protocol-buffers/

Bibliography 88

[9] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer,

K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv

preprint arXiv:1602.07360 (2016).

[10] Jiang, W., Ma, Y., Liu, B., Liu, H., Zhou, B. B., Zhu, J., Wu, S., and Jin, H. Layup:

layer-adaptive and multi-type intermediate-oriented memory optimization for GPU-based CNNs.

ACM Transactions on Architecture and Code Optimization (TACO) 16, 4 (2019), 1–23.

[11] Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M., Jerger, N. E., and

Moshovos, A. Proteus: exploiting numerical precision variability in deep neural networks. In

Proceedings of the 2016 International Conference on Supercomputing (2016), ACM, pp. 18–23.

[12] Kingma, D. P., and Ba, J. Adam: a method for stochastic optimization. In Proceedings of the

3rd International Conference on Learning Representations (2015), ICSA.

[13] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convo-

lutional neural networks. In Proceedings of Advances in Neural Information Processing Systems 25

(2012), NIPS, pp. 1097–1105.

[14] Le, T. D., Imai, H., Negishi, Y., and Kawachiya, K. Automatic GPU memory management

for large neural models in TensorFlow. In Proceedings of the 2019 ACM SIGPLAN International

Symposium on Memory Management (2019), pp. 1–13.

[15] Nvidia. Nvidia Turing GPU architecture. https://www.nvidia.com/content/dam/en-

zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-

Whitepaper.pdf, 2018.

[16] Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A., and Keckler, S. W. vDNN: virtu-

alized deep neural networks for scalable, memory-efficient neural network design. In Proceedings of

the 49th Annual IEEE/ACM International Symposium on Microarchitecture (2016), IEEE Press,

p. 18.

[17] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpa-

thy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet large scale

visual recognition challenge. International Journal of Computer Vision 115, 3 (2015), 211–252.

[18] Sakharnykh, N. Maximizing unified memory performance in CUDA. https://devblogs.nvidia.co

m/maximizing-unified-memory-performance-cuda/, 2017.

https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/
https://devblogs.nvidia.com/maximizing-unified-memory-performance-cuda/

Bibliography 89

[19] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556 (2014).

[20] Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V. Don’t decay the learning rate,

increase the batch size. In Proceedings of the 6th International Conference on Learning Represen-

tations (2018), ICSA.

[21] Sun, P., Feng, W., Han, R., Yan, S., and Wen, Y. Optimizing network performance for

distributed DNN training on GPU clusters: ImageNet/AlexNet training in 1.5 minutes. arXiv

preprint arXiv:1902.06855 (2019).

[22] Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. Inception-v4, Inception-ResNet

and the impact of residual connections on learning. In Proceedings of the 31st AAAI Conference on

Artificial Intelligence (2017), AAAI, pp. 4278–4284.

[23] Wang, L., Ye, J., Zhao, Y., Wu, W., Li, A., Song, S. L., Xu, Z., and Kraska, T. Su-

perNeurons: dynamic GPU memory management for training deep neural networks. In Proceedings

of the 23nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (2018),

ACM, pp. 41–53.

[24] Winograd, S. On multiplication of polynomials modulo a polynomial. SIAM Journal on Com-

puting 9, 2 (1980), 225–229.

[25] Yamashita, R., Nishio, M., Do, R. K. G., and Togashi, K. Convolutional neural networks:

an overview and application in radiology. Insights Into Imaging (2018), 611–629.

[26] Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H. Understanding neural net-

works through deep visualization. In Proceedings of International Conference on Machine Learning,

Deep Learning Workshop 15 (2015).

[27] Yu, X.-H., and Chen, G.-A. Efficient backpropagation learning using optimal learning rate and

momentum. Neural Networks 10, 3 (1997), 517–527.

[28] Zeiler, M. D. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701

(2012).

[29] Zhang, J., Yeung, S. H., Shu, Y., He, B., and Wang, W. Efficient memory management for

GPU-based deep learning systems. arXiv preprint arXiv:1903.06631 (2019).

	Introduction
	Motivating example
	Contributions
	Outline of the Dissertation

	Background
	GPUs
	Hardware architecture
	Programming model
	Memory management
	GPU performance issues
	Accelerated libraries

	Deep neural network
	Layers in neural networks
	Inference and Training
	Gradient descent
	Workload in CNN training

	TensorFlow
	Programming and execution model
	Computation graph
	Execution order
	GPU support

	Design
	Motivation and Problem Statement
	Design Overview
	Policy
	Identifying tensors to move
	Identifying when to transfer tensors

	The mechanism
	Limitations

	Reverse engineering Nvidia virtual memory
	cudaMemPrefetchAsync() v.s. cudaMemAdvise()
	Method
	Findings

	Efficient memory transfer between devices
	Overlapping memory transfer with computation
	Alternating the launch order
	Avoiding page faults
	AutoVM and pre-access

	Throughput of cudaMemPrefetchAsync() transfers

	Implementation
	Overview
	The policy
	Integrating AutoVM

	The mechanism MemOp()
	Adding support for cudaMemPrefetchAsync()
	Accessing cudaMemPrefetchAsync() from an operation

	Supporting pre-access

	Experiment
	Environment setup
	Experiment design
	Experiment code
	Test cases
	Data collection methods

	Results
	AlexNet
	VGG-19
	ResNet-152
	Full Training Run Experiment
	Summary of results

	Discussion
	Future improvements
	Further optimizing AutoVM

	Related work
	Conclusion
	Bibliography

